
sayI: Trusted User Authentication at Internet Scale

Jon A. Solworth
University of Illinois at Chicago
solworth@ethos-os.org

Wenyuan Fei
University of Illinois at Chicago
feiwenyuan@yahoo.com

ABSTRACT
With Internet-scale user authentication, an organization authenti-
cates users with which it has no prior association. Of necessity, the
organization must rely on third parties, which make up the authen-
tication infrastructure and can vouch for these users.

These third parties are trusted. And since different organizations
have different adversaries and different security needs, it is up to
the organization to determine which third parties to trust.

Unfortunately authentication infrastructures which meet the
above trust requirements have been inefficient, suffering from high
latency, excessive bandwidth, and high CPU load. These inefficien-
cies significantly impede wide-scale deployment.

We introduce sayI, a Public-Key based authentication Infrastruc-
ture (PKI). It is the first PKI which is efficient at Internet scale and
enables organizations to determine their risk from third parties. It
protects privacy and provides security. It is designed to minimize
bandwidth and latency through a careful and novel integration of
authorization and authentication. In sayI, irrelevant certificates do
not negatively impact performance. An Internet user authentication
is guaranteed to complete in a single Internet round trip, signifi-
cantly faster than alternative authentication infrastructures.

1 Introduction
The Internet is so large and so geographically dispersed that its use
depends on third parties. Since the Internet contains cyber crimi-
nals and other adversaries, the parties on which to depend must be
selected carefully. Nowhere is this choice more important than in
authentication, which binds (remote) users to their identity.

Authentication of a user is performed by an organization known
as the relying party. The user and the relying party are called
the principals of the authentication. A Trusted Third Party (TTP)
is a non-principal which provides information used in an authenti-
cation. For simplicity we focus here on users, but the techniques
described extend to hosts (see Appendix §B).

Figure 1 shows the structure of a user authentication (arrows
show communication during an authentication). The user provides
to the relying party an authenticator which uses her authentication
credentials (e.g., public key). The relying party authenticates the
user using the authenticator and information from TTPs. To au-
thenticate a user, she must be known to one or more TTPs.

Historically, TTPs have included banks (for letters-of-credit,
checks, and credit cards) and governments (for passports and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

User Relying Party TTPs

Figure 1: Authentication Architecture

driver’s licenses) and are essential when the relying party does not
know the user. In general, the relying party bears the risk of a mis-
authentication [60]1. Even when a TTP causes an authentication
failure, the TTP may not suffer the consequences. When a TTP is
an adversary, failures benefit the TTP.

One relying party’s adversary is not necessarily another’s. For
example, a Chinese government relying party would not want to
rely on a US TTP, but a US government relying party would. In-
deed, a citizen may not want to rely on a TTP which can be pres-
sured by his government, as this can be used for eavesdropping;
this is not an abstract concern, there are commercial products to
do just this [65]. Thus an authentication infrastructure must permit
relying parties to select their TTPs.

The trust model determines the rules by which TTP information
is used in an authentication. We’ll say that a trust model is strong
if relying parties can specify the third parties they trust for an au-
thentication. Absent a strong trust model, serious problems have
resulted. We give two examples using TTPs known in X.509 as
Certificate Authorities (CAs): (1) Verisign, issued a certificate pro-
viding an erroneous Microsoft public key [54]; this allowed signed,
but unauthentic software updates to millions of computers running
Microsoft software. (2) DigiNotar provided bogus certificates for
google.com, www.cia.gov, and torproject.org [71, 42]; these certifi-
cates were used in Iran, presumably the result of an Iranian in-
telligence service attack2. In the first case, Microsoft should not
have used any TTP since it was both relying party (software to be
updated) and user (signed updates); in the second case, relying par-
ties should not use a small Dutch TTP to authenticate major US
organizations. Trust is highly contextual, and trust is always a risk.
Clearly, a strong trust model is essential for security.

As we shall describe in §3, only Public Key Infrastructures
(PKIs) are known to support a strong trust model. In particular two
PKIs—SDSI/SPKI and X.509—support strong trust models but do
so inefficiently. We describe why X.509 is inefficient in §2.

In this paper we present a new Internet-scale user authentication
architecture called sayI, based on Public Key Cryptography (PKC)
[26, 59]. It is the first PKI with a strong trust model which is effi-
cient. In particular, sayI bounds latency to one Interent round trip
time and efficiently uses bandwidth and cryptographic operations.
Long term, our goal is to create and field sayI on the Internet, ini-
tially for the web. We are inspired here by the success of OpenID,
but wish to avoid its weaknesses (see §3). We also intend to in-
tegrate it with network services such as authorizing mail relays or
1The user too may share some risk with respect to a relying party. The
user can avoid this risk by not using the relying party’s services; she may
mitigate it with contracts. But since the relying party is autonomous, she
cannot control it.
2If Iran had its own CA embedded in browsers—as do the Chinese, US, and
many other countries—the DigiNotar attack would have been unnecessary.

mail delivery agents.
Authentication in sayI is group-based, that is a user u is authen-

ticated in the context of a group g. A group is a set of users; sayI’s
groups are specified by the relying party and are fully distributed.
There are several advantages for this approach as groups
• enable a strong trust model with efficient authentication;
• support varying quality of authentication, enabling relying

parties to trade off cost vs. quality of authentication;
• can also be used for authorization [33, 62]; and
• prevent naming attacks. For example, using a group of banks,

only banks will be authenticated; hbsc.com (not a bank)
could not be confused with hsbc.com (the bank).

Finally, sayI incorporates the best properties of existing PKIs. It
provides privacy, is resilient to failure, has simple and unambiguous
naming of users, and authenticates cryptographically (§5.5).

The remainder of this paper is organized as follows: §2 de-
scribes the strong trust model in X.509; §3 describes related work;
§4 describes the attacker model; §5 gives an overview of sayI; §6
describes sayI’s certificates; §7 gives sayI’s algorithm; §8 evalu-
ates sayI’s security and performance on several large, world-wide
groups, and measures its performance in terms of bandwidth, net-
work latency, and CPU time. In Appendix §A we describe how we
intend to deploy sayI and §B describes sayI generalizations.

2 Authentication in a strong trust model
In this section, we’ll describe authentication in X.509.

In a PKI, TTPs are relied upon through their certificates. Each
certificate is a statement, cryptographically signed using a private
key ki that belongs to i, a certificate issuer [48, 50]. An issuer is
either the relying party or a TTP. The statements are of the form
“i says x’s key is kx”. The certificates form a directed graph in
which the nodes are issuers or user keys (ki or kx above) and the
certificates are edges between them (e.g., ki → kx).

An authentication requires a sequence of certificates, called a
certification path because it is a path in the graph. It was first
introduced and formally defined in a global authentication service
without global trust [14]. The first certificate is signed by an issuer
known to the relying party; the last certificate specifies the user’s
key. In general, each certificate in a path is signed by a different
issuer.

Certification path construction is the problem of finding a certifi-
cation path. Certificates which cannot be part of a certification path
for that relying party we’ll call unproductive certificates, since
they do not contribute to the authentication. Processing unproduc-
tive certificates wastes Internet bandwidth and latency, as well as
signature verification CPU time [27, 52].

X.509 originally only had a hierarchical trust model [43]. In a
hierarchical trust model, each node has a single parent. Thus cer-
tification path construction is performed by going up the hierarchy
from user to root; there is only one possible path. A hierarchical
model is very efficient because it considers only productive certifi-
cates. However, it is not a strong trust model since the relying party
has no choice in the selection of TTPs used in an authentication.

X.509’s 3rd version [23, 24] added a graph-based, strong trust
model [17]. X.509 enables policy and naming constraints to be
embedded in a certificate, which a relying party uses to trim the
search space [27, 52], and to determine which certificates to rely
upon. But, certification path construction is challenging because
the graph is created from the TTPs’ perspective rather than a relying
party’s perspective:

1. In a graph search, at each node an edge must be selected to
search next; many of these edges (certificates) will be unpro-
ductive. An Internet-wide PKI encompassing all users would

have billions of users (and therefore certificates).
2. X.509’s constraints may not even be useful. In an open In-

ternet PKI, the TTP cannot anticipate the needs of millions
of relying parties. It is difficult to determine which TTP to
trust. Proposals have included rule-based mechanism [35]
and metrics [58].

Constraints are like road signs when driving, they can give only
a very limited view of what’s ahead. Especially on a long trip, ad-
ditional information is needed such as a map, a compass direction,
or directions specifying which roads to take. One who relies solely
on road signs will waste a lot of time going on unproductive roads.

Instead sayI uses a group mechanism to determine productive
certificates. The group mechanism serves as a (directed) map con-
taining only productive roads which lead to the destination. Be-
cause the relying party constructs the group, it is a strong trust
model.

An Internet-scale authentication system must also enable high
reuse to reduce administrative costs and enable broad use. In sayI
user-key and domain-key are reusable; the group mechanism is
also highly distributed and reusable. For example, an organization
might make available a group of all its members, which anyone can
use for authentication.

3 Related work
In the following, we’ll use A for Alice and B for Bob.

3.1 Network user authentication

Over-the-network user authentication is often based on passwords,
despite the large variety of attacks against them, including guess-
ing, spoofing, and key logging. (Non-networked use of passwords
is considerably safer, especially when password security is im-
proved [34, 66].) An extensive study of passwords vs. other
schemes concluded that most are more secure than passwords [21].
Passwords do, however, require minimal infrastructure.

SSH is protocol and set of services which typically do not use an
authentication infrastructure [73]. Two problems ensue from this
lack of infrastructure; (1) is that passwords are often used despite
the fact that SSH is public-key based. (2) there is no entity that can
vouch for unknown users.

Kerberos provides authentication within the enterprise [55, 47,
56]. To authenticate A to B, A requests that the Key Distribution
Center (KDC) create a symmetric key for it to communicate with
B. To speak to the KDC, a key is generated from a password or by
PKC using PKINIT. The KDC can thus impersonate either party or
do a Man-in-the-Middle (MitM) attack between A and B. Kerberos
is inappropriate on the Internet because the KDC (a TTP) would
hold principal secrets and A and B must trust a common set of
KDCs.

3.2 Authentication Infrastructure

The most important authentication infrastructure issues are scaling,
naming, and trust. Scaling and naming are matters of performance.
Trust and naming are security issues.

X.509 is the most widely deployed PKI. It is very flexible, but is
also complex [3, 46], and its semantics are inconsistent [38]. Dis-
tinguished names are ambiguous, because there is no central nam-
ing authority. Hence, an additional name (e.g., an email address)
is often used. The original design of X.509 relies on LDAP direc-
tories, a hierarchical structures and offline revocation. All of these
are not suited for today’s Internet use, and can result in naming,
“Which directory?” and cross-certification issues which increase
the complexity of authentication on Internet [36]. Gutmann ana-
lyzed many issues and challenges in X.509 and has suggested new

approaches to PKI system [37].
In X.509, an Attribute Certificate (AC) [32] can name a group to

which a user belongs. The attribute-based construction of groups
makes it easy to test group membership, but it does not aid in certi-
fication path construction.

PGP [9] uses email addresses as names, and allows every user
to create identity certificates. Email-like addresses are perhaps the
one world-wide naming scheme in which names are unambiguous3.
But PGP’s reliance on individuals and email makes it difficult to
scale, since it is both offline and each publisher knows relatively
few entities. Moreover, PGP is radically decentralized and transi-
tive; both amateurs and professionals may equally contribute to a
web of trust. As a result, it is difficult to analyze and regulate trust
in PGP. sayI adopts PGP’s use of the email-style names.

SDSI/SPKI is a PKI which was designed to support a strong trust
model using groups [61, 30, 31]. SDSI/SPKI’s greatest contribu-
tion is its strong trust model [29] and attendant security analysis.

SDSI uses membership certificates to specify that an entity be-
longs to a group [61]. Unfortunately, in SDSI, name resolution—
used to determine group membership—requires O(lc3) time where
c is the number of certificates and l is the maximum path length in
a name expression [22]. At Internet scale, c3 is too large.

SDSI/SPKI performance is sensitive to SDSI/SPKI’s local
names [1, 39, 51, 28]. Local names significantly authentication
costs “since one SDSI name can be defined in terms of another,
SDSI name resolution is fundamentally more complex than DNS
name resolution” [4]. sayI’s names are based on domain names.

OpenID [57] is a web-based authentication protocol; it contains
a billion credentials and is the largest authentication system ever
built. A user is authenticated, for example, by password to an
OpenID identity provider (a TTP). The provider then signs an au-
thenticator which the relying party verifies. OpenID provides only
user authentication, relying on X.509 to authenticate web sites and
OpenID providers. The OpenID identity provider is privy to such
private information as which service a user accesses, when and how
it has been accessed, etc. OpenID adoption is affected by user con-
cerns of privacy and credential exposure [67]. In general, the ben-
efits discussed in §5.5 are not provided by OpenID.

The development of PolicyMaker/KeyNote overlapped with that
of SDSI/SPKI. PolicyMaker [17], and its successor KeyNote [15,
16, 19] were designed to deal with the trust management issue,
which combines distributed authorization and authentication, into
a process called compliance checking [18, 12]. Trust management
separates distributed authentication and authorization from applica-
tion logic, leading to more modular (and hence more secure) sys-
tems. A large number of Trust Management Languages (TMLs)
have been created to deal with various problems, e.g., privacy [20,
72, 44, 40, 13, 63].

Domain Name System Security Extensions (DNSSEC) [7, 8, 45]
protects the domain name resolvers from forged Domain Name
System (DNS) data. The primary goal of DNSSEC is protecting
IP addresses, but other general-purpose certificates can also be pro-
tected by using CERT (certificate) records. DNSSEC responses
(RRSIG record) are signed and can be verified by a certification
path consisting of DS (containing key) and DNSKEY (containing
DS record and DNS record) records. Such a sequence enables a
domain to be reached from root DNS. While DNSSEC supports
multiple trust anchors, they are all part of a single hierarchy (with-
out relying part choice), and thus it is not a strong trust model.

A trust graph [2] specifies the trust relationships among entities.
The nodes are entities on the network and the edges between any
3Of course, no naming scheme is perfect. Names may be reused or author-
ities may issue duplicate names. Still, such names are the best we have.

two nodes enable one node to certify the public key of another node.
But the trust graph lacks a way to differentiate trust strength based
on use and as far as we know has never been implemented.

4 Attacker Model
The attacker model includes attackers who
• want to steal authentication secrets from TTPs,
• are third parties not trusted to provide accurate information

for a given use (e.g., DigiNotar attacks),
• are TTPs that want to violate user privacy,
• want to fabricate authentication information by on-line at-

tacks against a TTP, and
• use Denial-of-Service attacks against TTPs to prevent rely-

ing party authentications.
Specifically excluded from the attacker model is dishonest TTPs

or insider attacks at honest TTPs, although such attacks can be au-
dited even after the fact by examining the certificates provided. The
relying party is assumed to take care in specifying which TTPs it
uses. Similarly excluded are attacks on the relying party or user.

5 sayI overview
A PKI must specify the TTPs used in an authentication, name en-
tities, define certificates, provision keys, and specify certification
path construction.

In sayI, group construction—the mechanism for creating groups
which can span organizations—determines the TTPs relied upon
when using that group. The set of users that can be authenticated
using a group is called the group’s membership.

Authentication on the Internet is inherently of varying reliabil-
ity. Using groups for authentication ensures that the authentication
is reliable enough for the purpose it will be used. For example,
authenticating a system administrator would typically not rely on
any TTP, because such access is very security sensitive. On the
other hand, a university library might lend a book based on authen-
tications using many TTPs—perhaps from any university within
the same state—enabling broader coverage but at lower integrity.
Thus there is a tension between strength of authentication and cov-
erage of users: large groups inherently have weaker authentication.
Groups enable this tunable use-based authentication reliability.

In this section we give an overview of sayI. §5.1 describes cer-
tificates and the group tree; §5.2 describes certificate names; §5.3
describes distributed groups and certification path; §5.4 shows how
certificates were designed for reuse, thus making the system more
economical to use; finally we describe a number of general advan-
tages of PKIs, in §5.5 to clarify some sayI design decisions.

5.1 Certificates

sayI constructs groups using user, key, and group certificates. The
ultimate purpose of group construction is to define a set of user cer-
tificates to be used for user authentication. The types of certificates
are:

cert. purpose
user binds a user name to a public key.
key binds a TTP domain name to a public key.
group names (1) members of the group, (2) key certifi-

cates and (3) other group certificates.

A group is specified by its root group certificate. The certificates
of a group form a tree, called the group tree, rooted at its root
group certificate. Only group certificates have children; user and
key certificates must be leaves. The group name is the name of its
root group certificate. Unlike a hierarchical PKI in which there is

a single global tree, sayI has a tree per group and as a whole is a
Directed Acyclic Graph (DAG).

Policy is set with group certificates, since the group certificate
says which TTPs are trusted when authenticating that group. Of
course, security depends on all the TTPs used in an authentication.

sayI groups are designed to minimize latency and bandwidth.
The group tree contains exactly those certificates necessary to au-
thenticate users of the group, and hence does not contain any unpro-
ductive certificates. As a result, the certification path construction
algorithm never encounters an unproductive certificate—reducing
network bandwidth and latency as well as signature validation com-
putations.

5.2 Names

Naming is important for performance and security. sayI names
have the same form as email addresses, l@d, where l is a local
name and d is a domain name of a TTP. Such sayI names spec-
ify certificates and in the case of user certificates they also name
users. They are unique, because the hierarchical administration of
the Internet ensures uniqueness of d ; and administration within the
domain ensures the uniqueness of l . d specifies both the location
from which to fetch a certificate and the signer of the certificate.
We say that a certificate signed by d is in d , since it is contained in
d’s domain.

We give examples of certificates and their names below

Type Name Example
Group l@g.d friends@g.smith.org

smith.org provides a group of her friends
Key l@k.d ydom.com@k.xdom.com

xdom.com asserts ydom.com’s key
User l@u.d bob@u.sigsac.org

the user known as bob at sigsac.org

There are three name spaces, so that group, key, and user names do
not conflict.

While we use only ASCII names in the examples, there is no
reason why names could not be Unicode (UTF-8). Indeed our en-
coding uses a length field for all names, and thus allows names with
arbitrary contents. See [53] for a discussion on names.

simple@g.stanford.edu

alice@u.stanford.edu bob@u.stanford.edu

Figure 2: Group Tree for A Single Domain

Example 1. Figure 2 shows a group named simple@g.stanford.edu
contained in domain stanford.edu. The group contains two users:
alice@u.stanford.edu and bob@u.stanford.edu. Each node in the
figure is a certificate: The elliptic node is a group certificate, and
the dashed rectangular nodes are user certificates.

5.3 Distributed Groups and Certification Path

A group could be specified with a single group certificate which
provides all the members of a group. Or it could use multiple group
certificates, thus distributing group construction, possibly across
domains. This modular structure enhances both large group con-
struction and group re-use.

In sayI, a TTP could be an intermediary or a publisher. An in-
termediary is an issuer of group and/or key certificates (a relying
party is always an intermediary). A publisher issues user certifi-
cates. An issuer may be both a publisher and an intermediary.

All groups specified by relying party d must have a name of the
form g@g.d—that is, groups must be at the relying party. The
relying party is seeded with a single key, kd. Prior to use, a cer-

tificate is validated with its issuer’s public key to detect fraudulent
certificates.

Before a relying party can validate a certificate at d’ , it must
fetch the key certificate for d’ . Thus in the group tree, key certifi-
cates must be fetched before certificates in another domain. Key
certificates are inherently cross-domain certificates.

A certification path is a path in the group tree plus the necessary
key certificates. A certification path starts with a group certificate
(signed by the relying party) and ends with a user certificate. The
relying party’s key is the anchor; the target is the user being au-
thenticated. Certification path is of the form:

c1, c2, . . . cn

Certificates c1, . . . , cn−1 are either group certificates or key certifi-
cates; cn is a user certificate. Each certificate cj is either signed
by the relying party or a signing key is provided in a key certificate
ci, i < j.

simple@g.mit.edu

stanford.edu@k.mit.edu bob@u.stanford.edu

Figure 3: Cross-Domain Group Tree
Example 2. Figure 3 shows a cross-domain group tree for the
group simple@g.mit.edu which spans two domains mit.edu, stan-
ford.edu and has a user bob@u.stanford.edu. The key certifi-
cate stanford.edu@k.mit.edu is denoted by solid rectangular; it is
referenced by simple@g.mit.edu. The anchor is kmit.edu. The
certification path is: simple@g.mit.edu, stanford.edu@k.mit.edu,
bob@u.stanford.edu.

5.4 Reuse
Group certificates promote reuse, since they can be used as parts of
other groups.

Keys are contained only in key and user certificates, so that keys
can be changed (for example due to a compromise) without chang-
ing group certificates. Thus key provisioning is separated from
group membership. This promotes reuse of key and user certificates
in different groups, while making group certificates more stable.

Modularity and low cost encourages organizations such as gov-
ernments, employers, schools, and financial institutions to share
their authentication databases for which they have already done the
most costly step, physically identifying users. Physically identi-
fying users is typically performed locally (i.e., face-to-face), us-
ing paper credentials such as driver’s licenses, passports and other
techniques to prevent impersonation. Reuse is a kind of economic
efficiency, in which the authentication infrastructure’s fixed cost is
spread over more uses.
Example 3. Figure 4 defines a group of organizations
at financial institutions (finance@g.finance.com) consisting of
banks (banks@g.federalreserve.gov) and credit card companies
(creditcard@g.creditcard.com). Note that banks and creditcards are,
in themselves, groups.

In this example, the bank keys are provided by the federal reserve
bank, the regulator of banks in the US. If this was insufficient—
perhaps you are transferring billions of dollars—you can eliminate
this intermediary by going to your bank and getting its public key.
The relying party decides whether group construction is delegated
out to save cost and reduce the inconvenience of acquiring keys, or
the relying party manages all keys and group certificates.

A group certificate can reference existing group certificates. An
application which needs to authenticate a bank can make use of the
existing bank group defined in Figure 4. The application just needs

finance@g.finance.com

federalreserve.gov@k.finance.com banks@g.federalreserve.gov

citi.com@k.federalreserve.gov chase.com@k.federalreserve.gov

creditcard.com@k.finance.com creditcard@g.creditcard.com

visa.com@k.creditcard.com mastercard.com@k.creditcard.com

Figure 4: Group Tree for Multiple Domains

to create its own group certificate and sign the key for banks group
(see example 4).

banks@g.example.com

federalreserve.gov@k.example.com banks@g.federalreserve.gov

citi.com@k.federalreserve.gov chase.com@k.federalreserve.gov

Figure 5: Reuse banks group
Example 4. Figure 5 shows a group of banks. example.com
creates a group certificate banks@g.example.com which refer-
ences banks@g.federalreserve.gov and a key certificate federalre-
serve.gov@k.example.com which provides the key for federalre-
serve.gov.

5.5 Other properties of sayI
We consider here some other properties of sayI.

1. There are no shared secrets.
(a) TTP eavesdropping requires a bogus key binding which

can be detected after the fact.
(b) one key can be used with all relying parties.

2. Mutual authentication can be asymmetrical. For example,
the customer can use the Federal Reserve to authenticate his
bank; the bank can use its customer database to authenticate
the customer.

3. Certificate signing can be performed off-line [50], preventing
signing certificates without corrupting an insider. Thus, theft
of PKC authentication databases or compromise of the on-
line database server cannot result in faulty authentication.

4. Certificates can be stored in untrusted caches, since they are
tamper evident. Tampering with the certificate would cause
signature validation to fail. This has important performance
and reliability implications as caching can be used to:
• increase reliability when a TTP is unavailable, by using

cached copies;
• reduce bandwidth, latency, and CPU use.

5. Privacy from TTPs, as a TTP never needs to know when a
user is being authenticated. The user certificate is directly
provided by the user.

6 sayI Certificates
All certificate types—group, key, and user—share the same header
format. The certificate header fields, sizes in bytes, and purpose are
given below.

field bytes explanation
size 4 the size of the certificate in bytes
version 4 certificate encoding version
validFrom 16
validTo 16 the certificate’s validity period
typeHash 64 the type of the certificate
revServer 1 + len revocation server name
publicKey 32 of the certificate signer, and
signature 128 over the certificate.

sayI certificates use Elliptic Curve Cryptography (ECC), provid-
ing high (128-bit) security—equivalent to the security of AES-128

[11]. ECC has been extensively studied since 1985, and since 2005
is the only PKC that NSA recommends for the protection of US
government SECRET information. ECC also has smaller signatures
and public keys than schemes such as RSA and DSA.

sayI is efficiently encoded. Given an 11-byte average domain
name [64], a certificate header on average is 276 bytes. Use of
ECC, a more efficient encoding, and elimination of unnecessary
fields results in sayI certificates which are about a fourth the size
of X.509 certificates. While sayI’s compact encoding is certainly
an advantage, its group structure has a far larger impact on perfor-
mance.

One of the challenges of dealing with Internet scale is to sup-
port a range from small to extremely large (i.e., the whole Inter-
net) groups efficiently. For simple groups, sayI uses prefetching
to reduce authentication latency: This is an effective technique for
all but the largest groups. For the largest groups, it is desirable
to avoid the bandwidth and latency of prefetching. For very large
groups, we introduce segmented groups which use more limited
prefetching. Using simple and segmented groups, sayI efficiently
supports groups of any size.

There is one key algorithmic difference between the two
schemes. In the simple case, all key and group certificates are
prefetched before any user authentication, while in the segmented
case, all but the last level (in the group tree) of key certificates are
pre-fetched. Either case requires one roundtrip latency (see §8).
The segmented case reduces the prefetch size at the cost of a key
fetch in user authentications.

We next describe the group certificates §6.1, the key certificates
§6.2, and the user certificates §6.3.

6.1 Group Certificates
In addition to header fields, a group certificate contains the fields:

keyNames a tuple of fully qualified key names (see §6.2)
groupCerts a tuple of group certificate names
members group members, each name is either:

user name a single user or
publisher every user at that publisher.

Wild cards can be used to denote sets of members or key names.
For example, *.com means all .com names. Names with ‘*’ in them
are called segmented names; they are used only for segmented
groups.

A segmented certificate is a group certificate which has exactly
one segmented key certificate name; it may also contain one seg-
mented member name as well as non-segmented key names. Only
a segmented certificate can contain segmented names.

6.2 Key Certificates
A fully qualified key name specifies the name of a TTP and the
location of the named TTP’s key. For example, the fully qualified
key name harvard.edu@k.example.com contains harvard.edu’s key
as asserted by example.com. Here, harvard.edu is called the short
name of the key’s owner. Short names are used to identify keys.

A key certificate specifies a set of pairs, where each pair is a

keyName TTP’s short name.
publicKey TTP’s public key.

6.3 User Certificates

User certificates have the same form as key certificates except the
pairs consist of

userName user’s name.
publicKey user’s public key.

7 Algorithm
The entities involved in authentication are given in Figure 6, an
expanded version of Figure 1. The user gets their user certificate
from the publisher and supplies it to the relying party. The relying
party requests the cache to create the certification path; this may
require consulting intermediaries. An intermediary provides the
needed group certificates and key certificates.

User Relying Party Cache

Publisher Intermediary

Figure 6: Architecture for sayI

Authentication takes place when a user u wants access to a ser-
vice s provided by a relying party to user of group g. For u to be
authorized to use s, u ∈ g. Authentication is done in the context of
g, simultaneously authorizing the user to access the service and au-
thenticating the user via the certification path. Thus g serves both
authorization and authentication in a natural way.

Certification path construction has two phases. We describe here
the simple case: The first phase, group prefetch, fetches the group
and key certificates. The second phase, lookup, fetches the user
certificate and computes the certification path.

The full algorithm overview is as follows:
Group prefetch Given the group name provided by the relying

party, the cache fetches its root group certificate. From the
group certificate the cache recursively fetches the key and
group certificates until on each path either there is a seg-
mented group certificate or there are no more key or group
certificates to be fetched.

Lookup A user provides a user name, e.g. u@p.com, to the relying
party, and then the relying party requests the user certificate
from the user. Concurrently, the relying party forwards the
user name to the cache. The cache returns a certification path
from anchor to p.com’s key certificate. (In the segmented
case, the cache will also fetch the key certificate for p.com;
for non-segmented groups this step has been performed dur-
ing group prefetch.)

Since the user provides her own user certificate and since other
certificates are cached, the TTP is unaware of user-relying party
interactions, providing privacy to the user and the relying party.

Now that we have given an overview of the algorithm, we’ll pro-
vide examples of simple and segmented groups.

Simple group example Figure 7 shows a simple (non-segmented)
certificate example (corresponding to Figure 3) for the group name
simple@g.mit.edu. We omit the header fields except “signer”,
which contains public key kx for signer x. We show the certifi-
cates fetched for the user’s name bob@u.stanford.edu. The group
prefetch reads 7a and 7b. Upon the request from the relying party,
certificate 7c is provided by the user. Lookup returns 7a and 7b
which are used to validate 7c.

The group’s members are a subset of the users at stanford.edu
and mit.edu; for reasons of space we show only a single user’s cer-
tificate, bob@u.stanford.edu.

signer kmit.edu

members bob@u.stanford.edu
groupCerts
keyNames stanford.edu@k.mit.edu

(a) Group certificate simple@g.mit.edu

signer kmit.edu

publicKey kstanford.edu

keyName stanford.edu

(b) Key certificate stanford.edu@k.mit.edu

signer kstanford.edu

publicKey kbob
userName bob@u.stanford.edu

(c) User certificate bob@u.stanford.edu
Figure 7: Simple certificate example

Segmented Certificate Example A segmented certificate exam-
ple is given in Figure 8, and is a truncated example for the
group “everyone on the Internet”. The group name is every-
one@g.example.com. The group certificate edu@g.example.com
specifies the subtree for signing all domain names ending with .edu.
(If extended to the entire Internet, there would be a group certifi-
cate for each top-level domain.) During group prefetch, the cer-
tificates 8a, 8b, 8c, 8d, and 8e are fetched. Given a user’s name
bob@u.mit.edu, the user certificate 8g for it is provided to the rely-
ing party. During lookup the key certificate 8f is fetched (based on
the segmented certificate 8b) and the certification path from 8a–8f
is returned to the relying party.

Algorithm The algorithm builds a certification path as described
in §5. The certification path contains group and key certificates,
and its last certificate is a user certificate. For example, given
bob@u.stanford.edu in Figure 7 the certificate path is the sequence
of certificates with names

[simple@g.mit.edu, stanford.edu@k.mit.edu,
simple@g.stanford.edu, bob@u.stanford.edu].

The algorithm is based on groups. By phase:
prefetch does the group prefetch. It process group and key certifi-

cates using processGroupCert and processKeyCert.
lookup does the lookup phase, first fetching any needed key cer-

tificates and then in constructCertPath constructing the certi-
fication path.

The primary variables used in the certification are: g is a group, n
is a (fully qualified) certificate name, gn is a group certificate name,
gci is group certificate information; kn is a key certificate name, s
is a (short) key name, k is a public key, c is a certificate, kc is a key
certificate, and gc is a group certificate.

Four maps are defined for each group:
g.GroupCertInfoMap is a map from group certificate names to

information about group certificates. Such information in-
cludes:
Keys a map from short key names to a [k, kn]. This map

contains the keys that can be used to verify certificates
named in the group certificate. The elements are the
public key k and fully qualified key name kn of the
signer of k. The short key names are from the keyName
field of a key certificate.

SegmentedKeyName If a segmented group certificate, this
field is used to store segmented key certificate name.

g.MemberMap A map from member names to the group certifi-
cate name which contains them.

signer kexample.com

members
groupCerts edu@g.example.com,

com@g.example.com
keyNames

(a) Group certificate everyone@g.example.com

signer kexample.com

members *.edu
groupCerts
keyNames edu@k.example.com,

*.edu@k.eduintermediary.org

(b) Group certificate edu@g.example.com

signer kexample.com

publicKey keduintermediary.org

keyName eduintermediary.org

(c) Key certificate edu@k.example.com

signer kexample.com

members *.com
groupCerts
keyNames com@k.example.com,

*.com@k.comintermediary.org

(d) Group certificate com@g.example.com

signer kexample.com

publicKey kcomintermediary.org

keyName comintermediary.org

(e) Key certificate com@k.example.com

signer keduintermediary.org

publicKey kmit.edu

keyName mit.edu

(f) Key certificate mit.edu@k.eduintermediary.org

signer kmit.edu

publicKey kbob
userName bob@u.mit.edu

(g) User certificate bob@u.mit.edu
Figure 8: Everyone certificate example

Algorithm 1 prefetch(groupName)

1: g ← newGroup(groupName)
2: g.ParentMap[groupName]← “”
3: g.processGroupCert({anchor} , groupName)
4: return g

g.ParentMap a map from certificate name to the name of the cer-
tificate’s parent in the group tree.

g.CertMap a map from certificate name to [c, kn], where c is the
certificate and kn is the fully qualified key name of the signer.
The map stores all fetched certificates.

The group prefetch phase is invoked by calling prefetch with the
group name as the parameter (see Algorithm 1). The routine creates
a group, g, and fetches the group and key certificates.

The procedure processGroupCert (see Algorithm 2) fetches the
first group certificate, determines its key, and validates the certifi-
cate. It then iterates through the certificate’s keyNames, fetching
the key certificates if they have an unsegmented name and adding
to the set of keys that can be used at that node. If there is a seg-
mented key, it is saved in SegmentedKeyName. Then the group cer-
tificates are fetched and processed, and finally the member names

Algorithm 2 g.processGroupCert(keys, gn)

1: groupCert← requestCert(gn)
2: key ← keys[publisher(gn)]
3: if validate(key, groupCert) then
4: g.CertMap[gn]← [groupCert, key.kn]
5: gci.Keys← keys
6: for all kn ∈ groupCert.KeyNames do
7: g.ParentMap[kn]← gn
8: if segmented(kn) then
9: gci.SegmentedKeyName← kn

10: else
11: gci.Keys← g.processKeyCert(gci.Keys, kn)
12: end if
13: end for
14: for all gcName ∈ groupCert.GroupCerts do
15: g.ParentMap[gcName]← gn
16: g.processGroupCert(gci.Keys, gcName)
17: end for
18: g.GroupCertInfoMap[gn]← gci
19: for all member ∈ groupCert.Members do
20: g.MemberMap[member]← gn
21: end for
22: end if

Algorithm 3 g.processKeyCert(keys, kcName)

1: kc← requestCert(kcName)
2: key ← keys[publisher(kcName)]
3: Map← keys
4: if validate(key, kc) then
5: g.CertMap[kcName]← [kc, key.kn]
6: // keyName in kc is short key name
7: for i ∈ {0...#kc.keyName} do
8: Map[kc.keyName[i]]←

[kc.publicKey[i], kcName]
9: end for

10: end if
11: return Map

are processed.
The other certificate processing routine is processKeyCert (see

Algorithm 3). The key certificate is fetched, validated, and then
added to the CertMap. The name-key map is returned, to be in-
cluded in the group certificate’s Keys map.

Now we consider the lookup phase, lookup (see Algorithm 4).
The lookup is triggered when a user connects to the relying party,
sending a user name. The relying party requests the user certifi-
cate for the user name and in the mean time forwards the name to
the cache. The cache then does the lookup, which primarily deals
with segmented certificates. If the publisher of userName is in a
segmented certificate, its fully qualified key name, kn, is created by
instantiate, and then, if the key certificate is not in the cache, it is
fetched and processed. Next the non-segmented part of lookup is
invoked and returned as the result of the lookup.

Finally, the certification path is constructed in constructCertPath
(see Algorithm 5). Most of this algorithm creates the certificate
chain, certs (excluding user certificate). First, the certificate tree
is traversed from userName to groupName, creating the tuple cert-
Names, containing group certificate names. Next certNames is tra-
versed, putting the necessary key certificates and group certificates
into certs.

Algorithm 4 g.lookup(userName)

1: // Publisher Info
2: p← publisher(userName)
3: gn← g.match(p)
4: gci← g.GroupCertInfoMap[gn]
5: if gci.SegmentedKeyName 6= ”” then
6: kn← instantiate(gci.SegmentedKeyName, p)
7: if gci.Keys[p] not found then
8: gci.Keys← g.processKeyCert(gci.Keys, kn)
9: g.ParentMap[kn]← gn

10: end if
11: end if
12: // User Info
13: return g.constructCertPath(gci.Keys, userName)

Algorithm 5 g.constructCertPath(keys, userName)

1: certs← []
2: certNames← []
3: certName← g.match(publisher(userName))
4: while certName 6= ”” do
5: certNames← [certName] + certNames
6: certName← g.ParentMap[certName]
7: end while
8: // Now construct cert chain
9: keySet← {anchorKey}

10: for all n ∈ certNames do
11: kn← g.CertMap[n].kn
12: keyChain← []
13: while kn 6∈ keySet do
14: keySet← keySet ∪ {kn}
15: keyChain← [g.CertMap[kn].c] + keyChain
16: kn← g.CertMap[kn].kn
17: end while
18: certs← certs+ keyChain+ [g.CertMap[n].c]
19: end for
20: return certs

Finally, the relying party takes the path returned by con-
structCertPath and the user certificate and verifies the certificate
chain. (If the cache is trusted, it can verify the certificate chain
as each cert is fetched.) We have not described caching of user
certs (alternatively user certs could be sent on connect), two obvi-
ous means of reducing Internet roundtrips.

CacheRelying PartyUser

simple@g.mit.edu

stanford.edu@k.mit.edu standford@g.stanford.edu

4

5

6

5

1

6

2

3 3

Figure 9: Authentication sequence for cross-domain group
Figure 9 shows how the algorithm works on the simple cross-

domain group given in Figure 3. The numbers in the figure indicate
the sequence of operations. Operations with the same number can
be performed in parallel.

1. The relying party requests the group simple@g.mit.edu to be
fetched by the cache.

2. The cache fetches root group certificate simple@g.mit.edu.
3. The cache fetches the second level key and group certificates.

4. The user sends a user name to the relying party.
5. The relying party requests

• the user certificate from the user and
• the certification path (except user certificate) from the

cache.
6. The certification path is returned in two replies to step 5 and

is then validated by the relying party.

8 Evaluation
In the previous sections, we have shown that: sayI is designed to
provide a strong trust model which can support efficient global-
scale user Internet authentication. sayI needs at most one Inter-
net roundtrip for a user authentication, once the group has been
prefetched.

In this section we evaluate certification path construction, in
which 10,000 organizations and more contribute to an authenti-
cation database. We’ll also show how the entire Internet can be
structured to authenticate anyone—across hundreds of millions of
organizations and billions of users. While the reliability of Internet-
wide authentication is inherently weak—it is vulnerable to each of
the many TTPs it relies upon—it demonstrates scalability far be-
yond current state-of-the-art techniques.

We evaluate sayI from a number of perspectives:
group prefetch the bandwidth (bytes fetched) and time needed be-

fore any query can be answered.
lookup the bandwidth and time to do a lookup.
complexity the algorithmic complexity.
X.509 study sayI is compared to X.509
security the security improvements.

CPU performance was measured on a computer with a 3.2 GHz
AMD Phenom II X4 965 processor and 8 GB of memory. For the
purpose of the experiment, we only use one core. Internet latency
numbers were measured on PlanetLab, a world-wide networking
testbed.

sayI is written in the Go programming language, developed at
Google for systems programming. Our initial implementation is
1,879 lines of code—not including libraries and tools from a related
project. We are still working on some extensions, see §B; when
completed we will release sayI as open source.

8.1 Groups evaluated

The cost of group prefetch depends both the group size and the
number of intermediaries. We focus here on substantial groups,
which are the largest we conceived. These are the worse case for
our scheme, smaller groups will be proportionately less expensive.
To test scalability, it is necessary to stress the performance.

We use as examples the following large, world-wide groups
which have need to communicate with each other. To our knowl-
edge, such groups do not exist today; our goal was to stress sayI
with these out-sized groups. Thus, we would expect almost all
groups to be far smaller. The first four groups, numbering from
9,290 to 36,722 organizations are:

Universities 9,290 worldwide [68] [41]
Banks 13,371 worldwide [69]
Hospitals 18,000 worldwide [6]
Municipal Governments 36,722 worldwide [5]

(The source for these numbers is Wikipedia, the most readily avail-
able source; the purpose of these numbers is to provide a rough
estimate of large group sizes.) Such groups would enable sharing
educational transcripts, medical records, financial information
and intergovernmental communication. These groups might have
millions, even billions, of users.

We also consider three other synthetic groups

Small Group of 160 organizations, based on [74]
Mega Group a very large group with 5,000,000 organizations
Internet which is composed of hundreds of millions

of organizations and about two billion users
[25][49]

Thus we have small, large, and exceptionally large groups on which
to measure sayI. These groups are named in terms of the needed
group sizes. The largest PKI group today is the DoD authentica-
tion database composing tens of millions of users [10]. It has a
hierarchical structure—an adequate trust model only because all of
its relying parties share the same adversaries, those wishing to at-
tack the defense establishment of the US.

The Mega Group is at the far end of what might constitute a
reasonable group: 5,000,000 organizations could easily describe
billions of users. We don’t believe that such large, geographically
dispersed group would be worth distinguishing from the Internet
as a whole. Nevertheless, we wanted to stress our infrastructure to
ensure that it can handle even extreme use scenarios.

The next factor is the number of intermediaries for a group. The
number of intermediaries needed depends on geographic size, or-
ganization size, and other factors. For example, larger organiza-
tions need fewer intermediaries since they are available in more
places, and hence able to do the physical identification step at more
places. We have modeled 400 intermediaries for groups that span
a medium number of organizations—these intermediaries are one
per country except for the most highly populated countries (over
100,000,000) where an intermediary is provided for population
units of 100,000,000. We use 2,000 intermediaries for groups that
span a large number of organizations, approximately one organi-
zation per 3.5 million people. The Internet is a special case, since
there are now 280 top-level domains [25], and it is one of the few
places that names can be used to partition the space. In all cases,
we have used 3 levels of intermediaries; if more levels were used,
it would only affect group prefetch latency, a one-time cost for a
group.

8.2 Group Prefetch
Table 1 shows the cost of the group prefetch using simple (i.e.,
non-segmented) and segmented groups. For each of simple and
segmented, the table gives:
• the number of key/group certificates,
• the bytes those certificates use (and hence the bandwidth nec-

essary to transmit them), and
• the time to fetch them, which is a combination of latency and

limited bandwidth.
For all but the largest groups, the simple group prefetch is mod-

est, less than 3.4 million bytes. For the largest groups, the value of
segmentation is substantial: The whole Internet is less than 200,000
bytes. The Mega group is larger, at 61 million bytes, but we do not
believe anyone will actually want to construct groups of this size
because it is unwieldy and we believe unneeded. However, it is
feasible to support such groups in sayI.

Each group (other than the Internet) explicitly names all of its
member organizations. Segmented groups have a smaller prefetch,
since they do not fetch publishers’ keys; but if all the members are
fetched, segmented groups will use more total bandwidth. We used
11-byte names, the average size of an Internet name [64].

The time measures the group prefetch phase using a 1
megabit/second connection plus the latency, calculated by the depth
of the group tree multiplied by tw, the worst case round-trip latency
between two nodes on the Internet. We determined tw, by running
tests on PlanetLab. For node distances of between 8,000–12,205
miles, we measured tw = 1.45s. This is an overestimate (pes-
simistic for our case), since in general the latency and bandwidth

will overlap in time, distances are less than the maximum, and Plan-
etLab’s multiplexing means that a fraction of tw is spent waiting for
a time quantum. We had originally tried to get performance number
for sayI on PlanetLab, but were unable to do so4.

We used 3 levels of intermediaries. This means that of the times
given, 3 · 1.45 = 4.35 seconds is for latency. The remaining time
is for bandwidth. In the simple case, prefetch is bandwidth lim-
ited while in the segmented cases prefetch is primarily (except for
Municipal Government and Mega Group) latency limited.

sayI can support almost 6,000 certificate validations per second
(on a single core). During the lookup phase, these certificate vali-
dations can be overlapped with network operations, and thus do not
add to total time.

8.3 Lookup

The time and number of bytes to do a lookup depends only on (1)
whether the necessary certificates are cached and (2) whether the
group is segmented or not. Table 2 shows the number of bytes
fetched and Internet latency. It also shows the number of authenti-
cations per second per CPU.

If the certificates are not cached then one Internet fetch (the user
certificate) is needed for a simple group and two concurrent Internet
fetches (the user certificate and the publisher’s key certificate) are
needed for a segmented group. When not cached, signature ver-
ification time dominates authentications per second, limiting per-
formance to 5,882 path discoveries per second in the simple case
and 2,941 in the segmented case. ECC signature verifications are
more expensive than RSA, but ECC signatures and public keys are
smaller, saving transmission bandwidth and making more effective
use of caches.

We also measured the number of authentications per second
when the user certificate is cached, and hence no verifications are
needed. So the number authentications is much larger, 78,259 in
the simple case and 49,195 in the segmented case, yielding an im-
provement of a factor of 13.3–16.7 over the uncached case.

Group Internet Auth/
Type Bytes Latency Second
Simple 345 1.45 s 5,882Not Cached
Segmented 692 1.45 s 2,941
Simple 0 0 78,259Cached
Segmented 0 0 49,195

Table 2: sayI lookup latency

8.4 X.509 performance studies

Performance studies of any scale on the X.509 graph model are
scarce. For example, Elley et al. [27] which considers the prob-
lem of X.509 certification path does not report any numbers. We
conjecture this is because (1) there are a large number of options
in path discovery and (2) bandwidth limitations mean that graph
deployments are all small scale.

Zhao and Smith have studied X.509 certification path of an 160
organization graph [75, 74] using a network simulator; these papers
provided key insights in the design of sayI. They show a network
latency of 36 Internet round trips on average in X.509; the same size
group requires 4 round trips in sayI (including 3 levels of group
4 We had two problems: First, sayI’s memory usage exceded Plan-
etLab limits; we reduced sayI’s memory footprint. Second, the
multiplexing of PlanetLab was so high (and non-transparent) that
we were essentially measuring job schedule queuing time rather
than network latency. We suspect that a reduced memory footprint
would result in smaller queuing delay, but that would have required
a complete rewrite of sayI.

Inter- Simple Segmented
Groups Publishers mediaries Certs Bytes Time (sec) Certs Bytes Time (sec)
Universities 9,290 400 1,201 787,190 10.36 801 378,155 7.24
Banks 13,771 400 1,201 1,038,126 12.27 801 431,927 7.65
Hospitals 18,000 400 1,201 1,274,950 14.08 801 482,675 8.03
Municipal Gov. 36,722 2,000 6,001 3,388,982 30.21 4,001 1,772,939 17.88
Small Group 154 6 19 13,170 4.45 13 6,119 4.40
Mega Group 5,000,000 2,000 6,001 281,332,550 2,150.75 4,001 61,332,275 472.28
Internet 200,000,000 280 841 11,200,193,750 85,455.05 561 196,835 5.85

Table 1: Groups which span the Internet, their structure as sayI groups and group prefetch bandwidth and latency measures

prefetch and a lookup). Using PlanetLab latencies, their time is
52.20 seconds vs 4.45 seconds for sayI (see “Small group” in 1),
both of these numbers use 1.45 seconds round trip time.

In their paper, Zhao and Smith used a round-trip time of 0.22
seconds; using this smaller number they achieve 7.7 seconds vs.
0.88 seconds for sayI. Note that even in this case, network latency
far outweighs crypto operations.

It is interesting to compare the certificates fetched. sayI fetches
the same (simple) group with 19 certificates plus 1 certificate per
user; in contrast, Zhao uses 100 certificates, about 5 times as many.
For sayI, after the first user is authenticated, at most 1 certificate
(and 1 Internet round-trip latency) per user authentication is re-
quired. X.509, on the other hand, may still need to fetch more than
a user certificate if the user is at a different organization. In other
words, sayI group prefetch fetches all non-user certificates while
X.509 path certification is only a partial fetch.

The comparison of bandwidth is even more striking. sayI’s band-
width consumed on this problem is about 1

20
of X.509’s. A factor

of 4 is due to smaller, better encoded certificates and a factor of
5 is due to fewer certificates. Of course, X.509 can use ECC but
sayI’s encoding would still be significantly smaller due to fewer
fields and implicit, as opposed to ASN.1’s explicit (describing the
encoded fields), encoding. X.509 needs more certificates because
there are many paths to the same key.

What happens as the size of the graph grows? Using bidi-
rectional search, the best algorithm for this problem, search time
grows by bd/2 where b is the branching factor and d is the distance
between the two nodes [70]. Clearly as the graph grows, either b or
d needs to increase resulting in an asymptotic increase in certifica-
tion path.

Hence, search—bandwidth and latency—grows with the square
root of the graph size. In sayI, bandwidth and latency is propor-
tional to the group size which even for large groups is modest. (And
on segmented groups is modest even for the largest groups).

8.5 Algorithm Complexity
Based on Table 2, the CPU time is crypto-computation bound for
uncached certificates. Let the time for certificate validation be v. In
the group tree, let the number of group certificates plus key certifi-
cates be N and the total number of bytes of the certificates be B.
The time complexity for group prefetch is O(N · v +B).

During the lookup phase, the chain is built from group head to
just before the user certificate. We use P to denote the number of
bytes in the certificate chain. So the time complexity for look up
phase is O(P + v) for the segmented case.

Thus the cost is linear in the size of the input plus the output,
plus the cost of a verification each time a certificate is brought in
the cache.

8.6 Security
sayI provides security as stated in Section §1 by allowing relying
party to choose whom to trust. We also require groups to be well
formed, defined as
• Keys can only be used from ancestor nodes and

• Member names cannot be replicated along different paths in
the group tree.

The second requirement prevents DigiNotar-like attacks.
Since the group is prefetched, and any wildcards are contained in

the prefetched certificates, the group can be analyzed after prefetch
to ensure the above conditions. Of course, this means that groups
might be rejected due to errors in their construction. To avoid prob-
lems, sayI uses a two-stage approach to group prefetch. First, the
new version of the group is fetched and checked. If it passes, it
replaces the old version of the group. This can be done by the ex-
pediency of creating a new version of the intermediaries, all signed
by the relying party.

9 Conclusion
An authentication infrastructure needs a strong trust model to en-
able a relying party to control the risk of accidentally or adver-
sarially induced authentication failures. Hence, all modern PKIs
support strong trust models.

However, the cost for strong trust models has been high in terms
of latency, bandwidth, and CPU time. On the Internet, where
roundtrip latencies can be over a second, extra round trips impact
the user experience. Bandwidth costs make it less attractive for or-
ganizations to share authentication databases and more expensive
to use them. CPU time adds to latency and costs.

sayI’s use of groups for authentication provides high security. Its
group construction specifies the TTPs that are relied upon, imple-
menting a strong trust model. Its groups also enable TTP choice—
and therefore cost—to be determined depending on the purpose of
the authentication. Thus very important groups can have high re-
liable authentication while less important groups can use less re-
liable, but more cost effective, authentication. It prevents attacks
such as the ones using DigiNotar and Verisign. It prevents naming
attacks, which are often used in phishing. The groups, which are
constructed by the relying party can also be used for authorization.

sayI groups are extremely efficient. Its groups
• enable shorter path lengths, reducing the number of

roundtrips, and hence latency and
• enable group prefetch which can be done before an authenti-

cation.
After a group prefetch, at most one round trip latency is needed for
an authentication.

sayI avoids unproductive certificates, reducing bandwidth and la-
tency while increasing computational efficiency. A sayI authenti-
cation requires information which is proportional to the number of
organizations contributing authentication information.

sayI shows substantial speedup even for small groups relative to
X.509. A 160 organization PKI showed 8.75 fold speed-up and a
20 fold reduction in bandwidth. sayI’s advantage increases with in-
creasing group size, as X.509 needs to do a search over increasingly
larger graphs which contain mostly unproductive certificates.

We plan to release sayI as open source. In Appendix §A we de-
scribe our plans to further sayI deployment. Future work includes
integration of the variations described in §B and integration with

both general purpose services, such as the web, and specific ser-
vices.

10 References
[1] ABADI, M. On SDSI’s linked local name spaces. In PCSFW: Proceedings of

The 10th Computer Security Foundations Workshop (1997), IEEE Computer
Society Press.

[2] ADAMS, C., BURMESTER, M., DESMEDT, Y., REITER, M., AND
ZIMMERMANN, P. Which PKI (public key infrastructure) is the right one?
(panel session). In Proceedings of the 7th ACM conference on Computer and
communications security (New York, NY, USA, 2000), CCS ’00, ACM,
pp. 98–101.

[3] ADAMS, C., AND LLOYD, S. Understanding PKI: Concepts, Standards, and
Deployment Considerations, 2nd ed. Addison-Wesley, 2002.

[4] AJMANI, S., CLARKE, D. E., MOH, C.-H., AND RICHMAN, S. Conchord:
Cooperative SDSI certificate storage and name resolution. In IPTPS (2002),
pp. 141–154.

[5] ANSWERS. The number of cities in the world. http://wiki.answers.
com/Q/Total_number_of_cities_in_the_world, 2009.

[6] ANSWERS. The number of hospitals in the world. http://wiki.answers.
com/Q/How_many_hospitals_are_there_in_the_world, 2011.

[7] ARENDS, R., AUSTEIN, R., LARSON, M., MASSEY, D., AND ROSE, S. DNS
Security Introduction and Requirements, March 2005.

[8] ARENDS, R., AUSTEIN, R., LARSON, M., MASSEY, D., AND ROSE, S.
Resource Records for the DNS Security Extensions, Mar. 2005.

[9] ATKINS, D., STALLINGS, W., AND ZIMMERMANN, P. RFC 1991: PGP
message exchange formats, Aug. 1996. Status: INFORMATIONAL.

[10] AUGUSTSHELL. August schell awarded 5-year, $37m agency-wide contract to
supply select red hat products to the department of defense.
http://www.augustschell.com/news/august-schell-awarded-5-year-37m-agency-
wide-contract-supply-select-red-hat-products-departme-0,
2011.

[11] BARKER, E., BARKER, W., BURR, W., POLK, W., AND SMID, M.
Recommendation for key management—part 1: General (revised), Mar. 2007.

[12] BAUER, L., GARRISS, S., AND REITER, M. K. Distributed proving in
access-control systems. In IEEE Symposium on Security and Privacy (2005),
pp. 81–95.

[13] BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. Trust negotiations:
Concepts, systems, and languages. Computing in Science and Engg. 6, 4
(2004), 27–34.

[14] BIRRELL, A., LAMPSON, B. W., NEEDHAM, R. M., AND SCHROEDER,
M. D. A global authentication service without global trust. In IEEE Symposium
on Security and Privacy (1986), pp. 223–230.

[15] BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. RFC
2704: The KeyNote trust-management system version 2, Sept. 1999.

[16] BLAZE, M., FEIGENBAUM, J., AND KEROMYTIS, A. D. The role of trust
management in distributed systems security. In Secure Internet Programming,
Security Issues for Mobile and Distributed Objects (1999), J. Vitek and C. D.
Jensen, Eds., vol. 1603 of Lecture Notes in Computer Science, Springer,
pp. 185–210.

[17] BLAZE, M., FEIGENBAUM, J., AND LACY, J. Decentralized trust
management. In Proc. IEEE Symp. Security and Privacy (1996).

[18] BLAZE, M., FEIGENBAUM, J., AND STRAUSS, M. Compliance checking in
the PolicyMaker trust management system. In Financial Cryptography (Feb. 11
1998).

[19] BLAZE, M., IOANNIDIS, J., AND KEROMYTIS, A. D. Experience with the
KeyNote trust management system: Applications and future directions. In
International Conference on Trust Management (iTrust) (2003), P. Nixon and
S. Terzis, Eds., vol. 2692 of Lecture Notes in Computer Science, Springer,
pp. 284–300.

[20] BONATTI, P., AND SAMARATI, P. Regulating service access and information
release on the web. In CCS ’00: Proceedings of the 7th ACM conference on
Computer and communications security (New York, NY, USA, 2000), ACM
Press, pp. 134–143.

[21] BONNEAU, J., HERLEY, C., VAN OORSCHOT, P. C., AND STAJANO, F. The
quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In Proc. IEEE Symp. Security and Privacy (2012),
pp. 553–567.

[22] CLARKE, D., ELIEN, J.-E., ELLISON, C., FREDETTE, M., MORCOS, A.,
AND RIVEST, R. L. Certificate chain discovery in SPKI/SDSI. J. Comput.
Secur. 9, 4 (2001), 285–322.

[23] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S., HOUSLEY, R.,
AND POLK, W. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile, May 2008.

[24] COOPER, M., DZAMBASOW, Y., HESSE, P., JOSEPH, S., AND NICHOLAS, R.
RFC 4158: Internet x.509 public key infrastructure: Certification path building,
Sept. 2005.

[25] COUVERING, A. V. How many top-level domains are there?

http://www.mindsandmachines.com/2009/03/
how-many-top-level-domains-are-there/, 2009.

[26] DIFFIE, W., AND HELLMAN, M. New directions in cryptography. IEEE
Transactions on Information Theory IT-22, 6 (Nov. 1976), 644–654.

[27] ELLEY, Y., ANDERSON, A., HANNA, S., MULLAN, S., PERLMAN, R., AND
PROCTOR, S. Building certification paths: Forward vs. reverse. In Proc. of the
Symp. on Network and Distributed Systems Security (NDSS) (San Diego, CA,
2001), Internet Society.

[28] ELLISON, C. Establishing identity without certification authorities. In
Proceedings of the sixth annual USENIX Security Symposium, focusing on
applications of cryptography (San Jose, California, 1996), USENIX, Ed.,
USENIX, pp. 67–76.

[29] ELLISON, C., AND SCHNEIER, B. Ten risks of PKI: What you’re not being told
about Public Key Infrastructure. Computer Security Journal 16, 1 (2000), 1–7.

[30] ELLISON, C. M. RFC 2692: SPKI requirements. The Internet Society, Sept.
1999.

[31] ELLISON, C. M., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B.,
AND YLONEN, T. RFC 2693: SPKI certificate theory, Sept. 1999.

[32] FARRELL, S., HOUSLEY, R., AND TURNER, S. An Internet attribute certificate
profile for authorization, Jan. 2010.

[33] FERRAIOLO, D. F., AND KUHN, R. Role based access control. In 15th
National Computer Security Conference (Baltimore, MD, 1992), pp. 554–563.

[34] FORGET, A., CHIASSON, S., VAN OORSCHOT, P. C., AND BIDDLE, R.
Improving text passwords through persuasion. In Proceedings of the 4th
symposium on Usable privacy and security (New York, NY, USA, 2008),
SOUPS ’08, ACM, pp. 1–12.

[35] GLIGOR, V. D., LUAN, S.-W., AND PATO, J. N. On inter-realm authentication
in large distributed systems. In Proceedings of the 1992 IEEE Symposium on
Security and Privacy (Washington, DC, USA, 1992), SP ’92, IEEE Computer
Society, pp. 2–.

[36] GUTMANN, P. PKI: It’s not dead, just resting. IEEE Computer 35, 8 (2002),
41–49.

[37] GUTMANN, P. How to build a PKI that works.
http://www.cs.auckland.ac.nz/~pgut001/pubs/howto.pdf,
2003.

[38] GUTMANN, P. How to build a PKI that works. In 3rd PKI workshop (2004).
Invited talk.

[39] HALPERN, J. Y., AND VAN DER MEYDEN, R. A logic for SDSI’s linked local
name spaces. Journal of Computer Security (Jan. 28 2000).

[40] HERZBERG, A., MASS, Y., MICHAELI, J., RAVID, Y., AND NAOR, D. Access
control meets public key infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy (S&P 2000)
(Washington, DC, USA, 2000), IEEE Computer Society, p. 2.

[41] INFOPLEASE. Number of U.S. colleges and universities.
http://www.infoplease.com/ipa/A0908742.html, 2005.

[42] IOERROR. Diginotar damage disclosure. https://blog.torproject.
org/blog/diginotar-damage-disclosure, 2011.

[43] ISO. ISO/IEC 9594-8 information technology—open systems
interconnection—the directory: Authentication framework, 1993. also
published as ITU-T X.509 Recommendation.

[44] JIM, T. SD3: A trust management system with certified evaluation. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy (S&P 2001)
(Washington, DC, USA, 2001), IEEE Computer Society, p. 106.

[45] JOSEFSSON, S. Storing Certificates in the Domain Name System (DNS),
March 2006.

[46] KAUFMAN, C., PERLMAN, R., AND SPECINER, M. Network Security: Private
Communication in a Public World. Prentice-Hall, 2002.

[47] KOHL, J. T., NEUMAN, B. C., AND TS’O, T. Y. The evolution of the Kerberos
authentication service. In Proceedings of the Spring EurOpen’91 Conference
(Tromso, 1991).

[48] KOHNFELDER, L. M. Towards a practical public-key cryptosystem. B.S.
Thesis, supervised by L. Adleman, May 1978.

[49] LABNOL. Total domain name registrations. http://www.labnol.org/
internet/total-web-domain-names/18395/, 2010.

[50] LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E.
Authentication in distributed systems: Theory and practice. ACM Transactions
on Computing Systems (TOCS) 10, 4 (1992), 265–310.

[51] LI, N. Local names in SPKI/SDSI. In PCSFW: Proceedings of The 13th
Computer Security Foundations Workshop (2000), IEEE Computer Society
Press.

[52] LLOYD, S. Understanding certification path construction, Sept. 2002.
[53] MCKENZIE, P. Falsehoods programmers believe about names.

http://goo.gl/eIfr, 2010.
[54] MICROSOFT. Erroneous verisign-issued digital certificates pose spoofing

hazard. http://technet.microsoft.com/en-us/security/
bulletin/ms01-017, Mar. 22 2001. Microsoft Security Bulletin
MS01-017.

[55] MILLER, S. P., NEUMAN, B. C., SCHILLER, J. I., AND SALTZER, J. H.
Kerberos authentication and authorization system. Tech. rep., MIT, 1987.

http://wiki.answers.com/Q/Total_number_of_cities_in_the_world
http://wiki.answers.com/Q/Total_number_of_cities_in_the_world
http://wiki.answers.com/Q/How_many_hospitals_are_there_in_the_world
http://wiki.answers.com/Q/How_many_hospitals_are_there_in_the_world
http://www.mindsandmachines.com/2009/03/how-many-top-level-domains-are-there/
http://www.mindsandmachines.com/2009/03/how-many-top-level-domains-are-there/
http://www.cs.auckland.ac.nz/~pgut001/pubs/howto.pdf
http://www.infoplease.com/ipa/A0908742.html
https://blog.torproject.org/blog/diginotar-damage-disclosure
https://blog.torproject.org/blog/diginotar-damage-disclosure
http://www.labnol.org/internet/total-web-domain-names/18395/
http://www.labnol.org/internet/total-web-domain-names/18395/
http://goo.gl/eIfr
http://technet.microsoft.com/en-us/security/bulletin/ms01-017
http://technet.microsoft.com/en-us/security/bulletin/ms01-017

[56] NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for
authentication in large networks of computers. CACM: Communications of the
ACM 21 (1978).

[57] RECORDON, D., AND REED, D. Openid 2.0: a platform for user-centric
identity management. In DIM ’06: Proceedings of the second ACM workshop
on Digital identity management (New York, NY, USA, 2006), ACM, pp. 11–16.

[58] REITER, M. K., AND STUBBLEBINE, S. G. Authentication metric analysis and
design. ACM Transactions on Information and System Security (TISSEC) 2, 2
(1999), 138–158.

[59] RIVEST, R., SHAMIR, A., AND ADLEMAN, L. On digital signatures and public
key cryptosystems. Communications of the ACM (CACM) 21 (1978), 120–126.

[60] RIVEST, R. L. Can we eliminate certificate revocations lists? In Financial
Cryptography (1998), pp. 178–183.

[61] RIVEST, R. L., AND LAMPSON, B. SDSI — a simple distributed security
infrastucture. Tech. rep., MIT, Apr. 1996.

[62] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E.
Role-based access control models. IEEE Computer 29, 2 (1996), 38–47.

[63] SEAMONS, K., WINSLETT, M., YU, T., SMITH, B., CHILD, E., JACOBSON,
J., MILLS, H., AND YU, L. Requirements for policy languages for trust
negotiation. In Third International Workshop on Policies for Distributed
Systems and Networks (POLICY 2002) (2002).

[64] SEARCHENGINEKNOWLEDGE. Will domain name length affect my search
engine rankings? http:
//www.searchengineknowledge.com/domains/length.php,
2006.

[65] SOGHOIAN, C., AND STAMM, S. Certified lies: detecting and defeating
government interception attacks against SSL. In Proceedings of the 15th
international conference on Financial Cryptography and Data Security (Berlin,
Heidelberg, 2012), FC’11, Springer-Verlag, pp. 250–259.

[66] STOBERT, E., FORGET, A., CHIASSON, S., VAN OORSCHOT, P. C., AND
BIDDLE, R. Exploring usability effects of increasing security in click-based
graphical passwords. In Proceedings of the 26th Annual Computer Security
Applications Conference (New York, NY, USA, 2010), ACSAC ’10, ACM,
pp. 79–88.

[67] SUN, S.-T., POSPISIL, E., MUSLUKHOV, I., DINDAR, N., HAWKEY, K., AND
BEZNOSOV, K. What makes users refuse web single sign-on?: an empirical
investigation of openid. In Proceedings of the Seventh Symposium on Usable
Privacy and Security (New York, NY, USA, 2011), SOUPS ’11, ACM,
pp. 4:1–4:20.

[68] UNIV.CC. Universities worldwide except united states.
http://univ.cc/world.php, 2011.

[69] WIKIPEDIA. The number of banks in the world.
http://en.wikipedia.org/wiki/Lists_of_banks, 2011.

[70] WIKIPEDIA. Bidirectional search.
http://en.wikipedia.org/wiki/Bidirectional_search,
2012.

[71] WIKIPEDIA. Diginotar.
http://en.wikipedia.org/wiki/DigiNotar, 2012.

[72] WINSLETT, M., YU, T., SEAMONS, K. E., HESS, A., JACOBSON, J., JARVIS,
R., SMITH, B., AND YU, L. Negotiating trust on the web. IEEE Internet
Computing 6, 6 (2002), 30–37.

[73] YLONEN, T. SSH—secure login connections over the Internet. In Proc. of the
USENIX Security Symposium (San Jose, California, 1996), pp. 37–42.

[74] ZHAO, M. Performance Evaluation of Distributed Security Protocols Using
Discrete Event Simulation. Tech. Rep. TR2005-559, Dartmouth College,
Computer Science, Hanover, NH, October 2005.

[75] ZHAO, M., AND SMITH, S. W. Modeling and evaluation of certification path
discovery in the emerging global PKI. In Public Key Infrastructure: EuroPKI
2006 (2006), Springer-Verlag LNCS.

APPENDIX

A Deployment
We plan to release sayI as open source software, so that anyone
who wants to use it or study it can do so. Software availability is
particularly useful to enable test drives and early deployments.

Public-key authentication enables a single key to be securely
used to communicate with an arbitrary number of different ser-
vices, avoiding a plethora of passwords. Or a variety of differ-
ent pseudonyms can be used for different purposes—such as work
and personal—and anonymity. Seeding of such software, once it is
established on the first machine can be done by Near-Field Com-
munication (NFC). Creating a certificate can be done by bringing
one’s public key to a publisher, along with a suitable photo iden-
tification, and asking for a key to be made. We note that financial

institutions, governments, universities, and employers often pro-
vide paper credentials based on a very similar mechanism. Thus
public-key authentication increases set up on the owner’s devices it
simplifies the per-server issue of pasword management.

We believe sayI will see its first adoption locally in organiza-
tions, growing bottom up (because it is useful) rather than top down
(by fiat). If successful, it can then federate to the Internet. So our
immediate concern is how to make sayI useful within the enterprise.

We have begun to integrate sayI with secure networking software
which provides authentication, encryption, and authorization. Us-
ing this network software in an application would both protect its
communication and integrate with sayI.

We plan to then integrate this with web services. We services
typically integrate a number of authentication mechanisms includ-
ing X.509, kerberos, and password. We also intend to integrate it
with applications—as in the mobile space—and services within an
organization in which sayI’s strong trust model is an easy fit.

sayI can be deployed within the enterprise: deployment does not
assume the existence of a global infrastructure. An enterprise, or
part of an enterprise, can implement a sayI service, and deploy ap-
plication and tools which use the service. As other organizations
deploy, the group mechanism can be used to federate across orga-
nizations.

B Variations
sayI is a very simple scheme. It is possible to generalize it in a num-
ber of directions to make it more flexible and useful. For example,
to provide
• Segmented group names
• Hierarchical name space
• Host names
• Multiple signers for segmented certificates

Segmented group names The first variation is a generalization of
segmented groups which allows organizations (publishers) to de-
cide which of their users are in a specified segmented group (they
can do this in the current scheme only for simple groups). For ex-
ample, there may be a working group which spans organizations,
and each organization determines which of its employees are mem-
bers of the working group.

In sayI, a segmented certificate does not contain any group cer-
tificate names. By allowing segmented group certificate names,
such as name@g.*.com in a segmented certificate, each .com can
efficiently provide a group certificate determining group members
from their organization.

Hierarchical name space The second variation allows a hier-
archical name space at a publisher. Thus, one could have em-
ployees.example.com, executive.employees.example.com, and cus-
tomers.example.com. This enables the publishers to create at-
tributes (such as ’employee’) which can be easily used to construct
groups.

User and host names sayI can be extended to support host names,
in addition to user names. We intend to provide a certificate to
represent a host.

Multiple signers The current scheme is for a single signer based
on the name of the publisher. For simple groups this is not an is-
sue, but for segmented groups this may be a problem: in the case
of *.com, this would mean that every .com key binding would be
signed by the same intermediary. This is not good for security;
more signers would have to compete for customers, lower prices,
and would encourage signers to increase security because if they
had security failures they might lose their signing privileges.

http://www.searchengineknowledge.com/domains/length.php
http://www.searchengineknowledge.com/domains/length.php
http://univ.cc/world.php
http://en.wikipedia.org/wiki/Lists_of_banks
http://en.wikipedia.org/wiki/Bidirectional_search
http://en.wikipedia.org/wiki/DigiNotar

This generalization would enable segmented key names to spec-
ify a set of signers.

	Introduction
	Authentication in a strong trust model
	Related work
	Network user authentication
	Authentication Infrastructure

	Attacker Model
	sayI overview
	Certificates
	Names
	Distributed Groups and Certification Path
	Reuse
	Other properties of sayI

	sayI Certificates
	Group Certificates
	Key Certificates
	User Certificates

	Algorithm
	Evaluation
	Groups evaluated
	Group Prefetch
	Lookup
	X.509 performance studies
	Algorithm Complexity
	Security

	Conclusion
	References
	Deployment
	Variations

