
Factoring High Level Information Flow Specifications into Low Level Access
Controls

Kevin Kahley Manigandan Radhakrishnan Jon A. Solworth

University of Illinois at Chicago
{kkahley, mradhakr, solworth}@cs.uic.edu

Abstract

Low level access controls must provide efficient
mechanisms for allowing or denying operations and
hence are typically based on the access matrix. How-
ever, when combining the goals of efficiency along with
the support for least privilege and higher level autho-
rization properties (such as information flow confiden-
tiality), the resulting access controls become tedious to
encode.

Compositional high level specifications can be much
more succinct. When combined with administrative con-
trols, they can be robust in changing what is authorized
in a controlled manner. Such specifications offer the
promise of being easier to configure and understand,
and in fact can be automatically analyzed for authoriza-
tion properties.

However, there remains the issue of how to generate
the low level access control configuration from the high
level specification. In this paper, we describe a factor-
ing algorithm to algorithmically translate a high level
specification of information flow authorization proper-
ties into low level access controls. In addition, several
optimizations are given which dramatically reduce the
size of the access control configuration generated.

1. Introduction

Sophisticated access control systems such as Role-
Based Access Controls [6, 21, 20] and Type Enforce-
ment [4] enable the specification of many authorization
properties such as information flow confidentiality, in-
formation flow integrity, and limiting the executables
which can access sensitive data. The ability to precisely
control what is authorized enables, in principle, applica-
tions to be well protected.

The price for such control is increased complexity
in specifying what is authorized. If the authorizations
are too difficult to specify, then either they are never
used (newer OS-based authorization systems are typi-
cally added on top of existing OSes) and when used,
the process of specifying the security of a system be-
comes cumbersome and error-prone. Obviously, an un-
used system provides no benefits. There are two types
of authorization specification errors: those whichover-
authorize—allowing actions to occur which should be
denied—and those whichunder-authorize—forbidding
actions which should be allowed. Errors which over-
authorize subject the system to additional attacks and are
difficult to detect. Errors which under-authorize are rel-
atively easy to detect since legitimate actions are denied.
Under-authorization errors can also result in vulnerabil-
ities, as users try to circumvent the system in order to
complete their work. Obviously, reduction in complex-
ity reduces errors and increases use.

Over time, an organization’s changing needs will re-
quire changes to what is authorized. Traditionally, sys-
tems have provided backdoors requiring totally trusted
users to make such modifications, for example, supe-
ruser privilege in Unix. Such backdoors make the sys-
tem extremely vulnerable to betrayal by these trusted
users and to the errors they might make. As an al-
ternative, administrative controls allow for controlled
changes to what is authorized and limit trust in those in-
dividuals to whom the organization is most vulnerable.
Administrative controls too have added complexity.

In this paper, we describe a multi-tiered authoriza-
tion system that we are developing which is intended to
support a broad suite of authorization properties. We
focus here on the oldest of such authorization proper-
ties, the information flow properties of confidentiality
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and integrity1. Our design is three tiered, consisting of
an administrative level, a high level specification, and a
low level, Operating System Kernel enforcement engine.
Our authorization system is implemented in the Linux
kernel, primarily as a Linux Security Module (LSM)
[26] and constitutes some 13,000 lines of code.

The high level specification is stateless and is in-
tended to be easy to understand. To enable succinct and
comprehensible specifications, the high level is compos-
able. A composableauthorization system is described
by componentstogether with rules for combining the
components and thus to determine what is authorized.
The composition produces the sets of privileges that a
process can possess at any instant, in other words an ac-
cess matrix [15] (which can be viewed as a snapshot of
any system). The advantage of a composable system is
that a single change to one of the components can result
in many changes to access matrix permissions; compa-
rable semantics are more awkward in non-composable
systems. Another example of a composable system is
RBAC’96 [21].

Access matrix-level implementations are more effi-
cient and hence desirable as run-time enforcement en-
gines. But since they are cumbersome to encode and
since small changes in requirements can lead to large
number of changes in the number of rows in the ac-
cess matrix and the permissions, it is desirable to have a
higher level specification.

In this paper, we describe the automatic translation—
which we callfactoring—from high level specification
to the runtime engine. An algorithm is given to factor
the high level specification into thekernelSeclayer; we
then described optimizations which reduces the number
of kernelSecelements generated.

The rest of the paper is organized as follows: In Sec-
tion 2 we describe the three-tiered system. In Section 3
the basic algorithm to factor the high-level specification
into thekernelSeclayer is given. In Section 4 the opti-
mizations that reduce the number of elements resulting
from factoring are discussed. In Section 5 we describe
related work and finally we conclude in Section 6.

2. System overview

Our overall system consists of three tiers:

administrative controls which enables the permis-
sions of the system to be changed in a controlled
way;

1 We consider only overt information flow, covert flows are beyond
the scope of this paper

high-level specification describes thecurrent permis-
sions of the system (sufficient to implement infor-
mation flow); and

kernelSec the low-level run-time engine implemented
in the operating system kernel.

These tiers share mechanism between them, but serve
different needs: the administrative controls allow the
system to change over time; the high-level specification
is intended to make it (relatively) easy to specify and to
analyze the current system authorizations; and theker-
nelSeclevel is intended to be efficient at run-time and
small enough to fit in an operating system kernel.

We note that the high level mechanism (and the com-
bination of high level mechanism plus administrative
controls) is composable. To enable changes to propa-
gate as necessary during composition, indirection (e.g.,
objects have labels, labels map to privileges) and reuse
(e.g., same label may be used on multiple objects) are
used. If the system encapsulates the correct abstractions,
the composition naturally provides the needed privileges
and changes are relatively easy.

To reduce errors in authorization configuration and
modification, we build upon recent advances of sys-
tem components with decidable authorization properties
[25, 18]. The decidability enables the high-level specifi-
cation to be analyzed, to answer questions such as: “Can
information in this object ever become publicly avail-
able”? The ability to automatically answer such ques-
tions effectively reduces the complexity of the system
because it is easier to understand what can happen and
thus the system is less error prone. It enables a separa-
tion between those that specify the configuration of the
authorization system—e.g., an outside contractor—vs.
those that determine whether the system is appropriate.

The decidability of our system plays another impor-
tant role beyond determining how authorizations can
evolve. The administrative controls of our system re-
quire analysis to determine what approvals are necessary
to make changes to what is authorized. The decidability
ensures that this analysis is precise and therefore well
defined.

Another mechanism reducing complexity is the fac-
toring of the high level specification into thekernelSec
tier. The overall system is shown in Figure 1.

The three tiers overlap. The middle layer contains a
current snapshot, and on top of that the administrative
controls are built. ThekernelSeclayer is produced from
the high-level specification. Hence, we next describe
the details of the tiers in the order of high-level speci-
fication, administrative controls, and then thekernelSec
layer.
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Figure 1. Factoring SPBAC into Security
Cards

2.1. The high level specification

Each object has a label which defines it protection
type. Associated with each label are three unary permis-
sions:

r(l) the group of users who can read objects labeledl;

w(l) the group of users who can write objects labeledl;
and

x(l) the group of users who can exec objects labeledl.

The execute permissions are listed here for complete-
ness, and although they are needed to perform anexec
we shall ignore them for the rest of this paper.

In addition there is a binary permission

mayF low(l, l′)

which is the group of users who can writel′ after having
readl. Note that for each labell that the process has
read, the user must be a member ofmayF low(l, l′) to
write l′; in addition the user needs the ability to both
readl and writel′. Hence, to writel′ given thatrs is the
set of labels read by the process, it is necessary that for
all l in rs:

r(l) ∩mayflow(l, l′) ∩ w(l′)

By convention we shall not explicitly de-
fine mayF low(l, l′) but shall implicitly define
mayflow(l, l) = w(l)—thus allowing flow between
objects of the same label by a user which has both read
and write permissions onl. The justification for not reg-
ulating information flow between objects with the same
label is that authorization is at the granularity of labels
(i.e. objects with the same label are not distinguished
in terms of permissions). Hence for information flow

between two object with the same label, the user needs
to be able to only read and write that label.

Since mayflows need not be defined between all la-
bels, we shall use the notationmayflow(l, l′) ↓ to mean
thatmayflow(l, l′) has been defined.

We note, although not covered in detail here, that the
high-level authorization system has a group mechanism
which allows the specification of the structure of groups
and the (groups of) users who can regulate membership
of the group. While the properties of this group structure
are important for the purposes of this paper, their de-
tailed structure is not, and we shall not define the group
structure here.

The compositional elements include groups (the
same group can be used to define different permissions)
and labels (the same label can be used on different ob-
jects).

Example: Consider the following permission defini-
tions: r(l0) = w(l1) = mayflow(l0, l1) = g0 and
r(l1) = w(l2) = mayflow(l1, l2) = g1. Then, assum-
ing g0 and g1 are non-empty groups, information can
flow from l0 to l1 and froml1 to l2 but not froml0 to l2
in a single process (mayflows are not transitive). Also
note that information does not flow in the direction of
decreasing (label) indices.

2.2. Administrative controls

The administrative controls are dependent on autho-
rization properties, such as information flow confiden-
tiality and information flow integrity.Information flow
confidentialitymeans that in every state after informa-
tion flows from labell to l′, the users that can readl′

are a subset of those that can readl. Information flow
integrity requires an integrity inequality (≥), that is, a
partial order to be provided between pairs of labels; in-
tegrity is maintained for information flow froml to l′ if
l ≥ l′.

Note that whether information flow is possible de-
pends on the permissions which are defined in terms of
groups. Hence, to answer such questions it is necessary
to be able to determine whether a group (or intersection
of groups or difference between groups) is nonempty.
Our group mechanism enables such relationships to be
structurally maintained (in every state) and automati-
cally analyzed—that is, it is decidable—and thus it is
possible to guarantee information flow confidentiality
even while allowing information flow.

Information flow confidentiality and information
flow integrity are always safe but are not always desir-
able. For example, it is necessary to violate confidential-
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ity in real systems (even MLS systems) for downgrades
(to allow declassification of information, for example,
after sufficient time has elapsed or on when the informa-
tion becomes public) and sanitization (removing sensi-
tive information from a file, such as the name of infor-
mants so that what remains can be released to the pub-
lic); information flow integrity is violated when cross
checking of information from independent sources pro-
vides higher quality results than its inputs. Hence, in-
formation flow confidentiality and integrity are conser-
vative and need to be violated in real systems. We note
that one of the advantages of Type Enforcement systems
over lattice mechanisms [1, 3] is that information flow
authorization properties can be selectively enforced and
violated in the same system.

To support administrative controls, two groups are as-
sociated with each labell:

ac(l) The group that can allow new violations to infor-
mation flow confidentiality. Approval is needed
from ac(l) when a new flow is added in which in-
formation can flow from an object labeledl to an-
other object which increases readership.

ai(l) The group that can allow new violations to infor-
mation flow integrity. Approval is needed from
ai(l) when a new flow is added in which informa-
tion can flow into an object labeledl from another
object with lower integrity.

Note that violations to information flow confidentiality
can occur only through the definition of new mayFlows,
while violations to information flow integrity can occur
only through the definition of new mayFlows and of in-
tegrity inequalities.

If the administrative groupac(l) (resp.ai(l)) are per-
manently empty, then it is impossible to add new viola-
tions to information flow confidentiality (resp. integrity)
for l. This provides the ability to lock down parts of the
system, preventing further changes with respect to that
label regardless of administrative action. (By locking
down every label, none of the authorization properties
can change.)

The administrative controls are not kernel based in
the sense that the algorithms for determining when se-
curity property approval is necessary are determined in
(system) processes. Moreover, the kernel level autho-
rization configuration is downloaded by another system
process. Defining new labels and mayFlows may change
existingkernelSeccomponents, requiring those compo-
nents to be downloaded into kernel. In our current im-
plementation, administrative changes require a reboot of
the system. However, in future implementation a reboot

will not be necessary if the permissions associated with a
process are not decreased by the administrative actions.

Example: In this example, the groups have fixed mem-
bership denoted here by a set of users. Consider a sys-
tem with two labels,l0 and l1 with r(l0) = {u} and
r(l1) = {u, u′} andw(l0) = w(l1) = {u} andl0 ≥ l1.
To define amayflow(l0, l1) = {u}, approval is needed
from ac(l0) because after information flow the set of
readers for the information increases; no approval is
needed fromai(l1) because becausel0 is of greater in-
tegrity thanl1.

2.3. KernelSec

ThekernelSeclayer is most similar to Type Enforce-
ment. It differs in that (1) transitions are allowed on any
missing privilege (not only onexec as in Type Enforce-
ment) and (2) it allows user ability to use permissions to
be expressed is an intersection of groups which, as we
shall see, is useful in factoring. (It has other differences
which are not germane to our purposes here2).

The primary entity is a Security Card which corre-
sponds to a row in the access matrix. The Security Card
consists of the following components:

name the name of the Security Card

groups a list of groups of the formg0&g1& . . .&gn. A
user must be a member ofeachlisted group to use
the Security Card.

permissions a list of read, write, and execute permis-
sions on labels, denotedr〈l〉, w〈l〉, x〈l〉 that a pro-
cess has when using the Security Card. The per-
missions are called thecurrent permissionsof the
Security Card.

security method a sequence of permission-action
pairs, where each permissionp is not a current
permission and the action is aswitchTo(s)
where s is the name of a Security Card which
contains permissionp.

The security method is invoked when a process re-
quests an operation which requires a permission
that is missing from the current permissions. If the
missing permission is in the security method and
theswitchTo(s) succeeds (the user is a member
of each of the groups ins ) then the current Security

2 These include arbitrary relabel privileges; active transitions trig-
ger operations to be performed (useful to implement dynamic sepa-
ration of duty); ability to implement DAC permissions; and the same
group mechanism as at the high level specification.
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Card is changed tos and the operation is allowed.
Otherwise, there is no change and the operation is
denied.

Example: This Security Card can be used by any user
belonging to the groupgall. It has privileges to read
the ‘Message of the Day (MotD)’. When the user tries
to read any accounting data (labeled Accounting) the
process switches cards to the Accounting card (with the
privileger〈Accounting〉) if the user is a member of the
Accounting card’s groups. Similarly for personnel data.

Name Simple User Card
Groups gall

Privileges r〈MotD〉

Security
Method

r〈Accounting〉:
switchTo(Accounting card);

r〈Personnel〉:
switchTo(Personnel card);

The ability to switch Security Cards, and thus change
the set of permission associated with a process based on
a missing read or write permission is crucial to our pur-
poses here. Without that capability, a user would have to
select in advance a Security Card which would provide
sufficient but not excessive permissions3 and if the per-
missions on that card do not suffice, the user must invoke
a new process with the needed permissions, since the
current process is blocked. With the security method’s
transitions on arbitrary missing privileges, the process’s
permissions will adapt to the past accesses, enabling
new permissions to be acquired on demand as allowed
by the high level specification.

3 In TE, the problem is similar with the word domain replacing
Security Card.

Example: Consider a MilSec-like system that enforces
simple information flow security using two labelsL
(Low) andH (High). The system also has two groups
gL andgH , such thatr(L) = w(L) = gL andr(H) =
w(H) = gH .

Name L Card
Groups gL

Privileges r〈L〉, w〈L〉

Security
Method

r〈H〉:
switchTo(H Card)

w〈H〉:
switchTo(H Card)

Name H Card
Groups gL&gH

Privileges r〈L〉, r〈H〉, w〈H〉
Security
Method

Every new process starts out with the ‘L’ card. If the
process only reads and writesL objects then the process
has all the privileges it requires. If it tries to read or write
H objects, the security method is invoked and if the user
(on whose behalf the process is executing) is a member
of both groupsgL andgH then the switch is performed
to the ‘H’ card.

Each user has an initial Security Card which is asso-
ciated with her first process. The initial Security Card
generated by our factoring algorithm does not have any
permissions; its sole function is to provide transitions
to subsequent Security Cards which contain the needed
permissions as allowed by the high level specification.

If a group’s membership changes, such that a process
becomes ineligible to use its Security Card (because the
user on whose behalf the process executes is no longer
a member of the requisite groups for the Security Card),
the process is terminated.
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Example: Security Cards can be used to implementas-
sured pipelines—in which an input (here, a file labeled
C that is to be printed) must go through a series of pro-
grams (here, labeler and spooler). Assured pipelines, of
course, cannot be implemented with a lattice [4].

Name Labeler Card
Groups glabeler

Privileges r〈C〉, w〈Spool〉
Security
Method

Name Printer Card
Groups gprinter

Privileges r〈Spool〉, w〈Printer〉
Security
Method

3. Factoring

In this section we describe how tofactor the high-
level specification into Security Cards. The description
is as follows:

• the structure of the Security Cards generated,

• the algorithm for factoring, and

• an example of factoring a high level specification
into Security Cards.

3.1. Structure of Security Cards generated

To dynamically modify the set of permissions that a
process has, the mayflow semantics require that reads be
tracked. Past writes, on the other hand, are irrelevant in
determining allowable future actions. To track the set of
labels read, each Security Card’s read permissions cor-
respond exactly to the set of labels read. Consider two
Security Cards,s0 ands1: a transition is allowed from
s0 to s1 only if (a) the transition is on a write ands0 and
s1 contain the same set of read permissions or (b) the
transition is on a read ofl ands1’s read permission are
the read permissions ofs0 andr〈l〉.

Since the writes need not be tracked to determine in-
formation flow authorization properties, each Security
Card will contain at most one write permission. The Se-
curity Card transitioned to will have a write permission
only if the transition is on that write permission.

To prevent race conditions, we shall require that a
user continue to be a member of each group necessary
to perform any read or write. (This prevents temporal

aberrations in which the group structure specifies that
no user can at any point perform two conflicting opera-
tions but—without this restriction—it would be possible
to circumvent this specification by performing one of the
operations, performing a group membership change, and
then performing the other operation.)

3.2. Factoring algorithm

The algorithm is shown in Figure 2. The primary
function,generateSecurityCards takes as argu-
ments the set of labels (L), and the high level permis-
sions on the labels for read (R), write (W), and mayflow
(Mayflow). It iterates over subsets of labels which
record the labels read (lines 2-9). The subset of labels
read determines which labels could be written if the as-
sociated groups contains a user to do so. A Security Card
is generated containing just read permissions for those
labels; in addition, for each label which can be written
(because there exists the prerequisite mayflow) a Secu-
rity Card is generated with the set of read permissions
plus the single write.

The work of generating an individual Security Card
is performed bycreateSecurityCard ; it has pa-
rametersrs (the set of labels with read permission),ws
(0 or 1 label with write permission), and L, R, W, and
Mayflow as ingenerateSecurityCards . If ws is
empty, the user must be a member of each read group in
rs; if ws = {w} the Mayflows must be satisfied as well
as the write permission forw. The read permissions are
generated for the labels inrs and the write permissions
are generated for the labels inws.

Finally, the security method transitions are created.
There are two types of transitions, one for reads and one
for writes. For each read permission not on the card, a
transition to a Security Card with one more read permis-
sion (and no write permission) is created. For each write
permission with the perquisite mayflows, a transition to
a card with that write permission (and the current read
permissions) is generated.

3.3. Factoring example

In Figure 3, the permissions are given for a lat-
tice consisting of three levels (in order of increasing
confidentiality)—P for public, C for confidential, andS
for secret—and allowing downgrade fromC to P. The
mayflow permissions specification is not sufficient to
implement a lattice protection scheme, in addition re-
lationships need to be maintained between the groups,
that is

gS ⊆ gC ⊆ gP (1)
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1: function GENERATESECURITYCARDS(L, R, W,
MayFlow)

2: for all rs∈ 2L do
3: for all w ∈ L do
4: if ∀r∈rsmayflow(r, w) ↓ then
5: CREATESECURITYCARD(rs, {w},

L, R, W, MayFlow)
6: end if
7: end for
8: CREATESECURITYCARD(rs, {}, L, R, W,

MayFlow)
9: end for

10: end function

11: function CREATESECURITYCARD(rs, ws, L, R, W,
MayFlow)

12: if ws= {} then
13: GROUPS(

⋂
r∈rs R(r))

14: else
15: ∃w ∈ ws
16: GROUPS(

⋂
r∈rs(R(r)∩MayFlow(r, w))∩

W (w))
17: end if
18: for all r ∈ rs do
19: PERMISSION(“r”, r)
20: end for
21: for all w ∈ ws do
22: PERMISSION(“w”, w)
23: end for
24: for all l ∈ L do
25: if l /∈ rs then
26: SECURITYMETHOD(“r”, l, rs ∪{l}, {})
27: end if
28: if l /∈ ws ∧ ∀r∈rsMayFlow(r, l) ↓ then
29: SECURITYMETHOD(“w”, l, rs, {l})
30: end if
31: end for
32: end function

33: function SECURITYMETHOD(op, l, rs, ws)
34: . missing privilege is op, l; destination card is

Read # rs # Write # ws # Card
35: end function

Figure 2. Security Card generation

Permission group
r(S) = gS

w(S) = gS

r(C) = gC

w(C) = gC

r(P) = gP

w(P) = gP

mayflow(P, C) = gC

mayflow(C, S) = gS

mayflow(P, S) = gS

mayflow(C, P) = gD

Figure 3. Example of a high level specifi-
cation

These relationships ensure that the readership gets more
selective (is strictly contained within the lower level)
with increasing levels of confidentiality. We show the
mayFlow graph in Figure 4 corresponding to the per-
missions defined in Figure 3. In a mayflow graph the
nodes are labels and there is a directed edge froml to l′

if mayflow(l, l′) is defined.

P

C

S

Figure 4. The mayflow graph correspond-
ing to Figure 3.

We next consider the writes which are possible given
the set of reads which have already been made by the
process. Figure 5 shows the labels which could be writ-
ten given a set of reads which have been performed.
Note that in addition to the traditional lattice write (i.e.,
the *-property or no write down rule), after having read
C one can writeP , which is a downgrade.

We next consider the set of Security Cards which are
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rs∈ 2L Possible Writes
{} {P,C, S}
{P} {P,C, S}
{C} {P,C, S}
{S} {S}

{P,C} {P,C, S}
{P, S} {S}
{C,S} {S}
{P,C, S} {S}

Figure 5. Possible writes given the set of
reads ( rs) performed so far.

generated by our factoring algorithm. There are 24 Se-
curity Cards generated from Figure 5, out of 32 con-
sidered (8 were not possible because the prerequisite
mayflows were not defined). All 24 Security Cards are
given in Appendix A; we describe here, some of the Se-
curity Cards generated.

The initial Security Card (shown in Figure 6) has no
permissions, and hence it is safe for it to be used by any-
one. There are no groups listed; since a user must be a
member ofeverygroup listed, when there are no groups
listed this holds (vacuously) for every user.

Name InitialCard
Groups
Privileges

Security
Method

r〈C〉:
switchTo(ReadC Card)

r〈P 〉:
switchTo(ReadP Card)

r〈S〉:
switchTo(ReadS Card)

w〈P 〉:
switchTo(WriteP Card)

w〈C〉:
switchTo(WriteC Card)

w〈S〉:
switchTo(WriteS Card)

Figure 6. Initial Security Card

Next we consider the cardRead CP Card shown in
Figure 7. This card is reached only after having read
objects with labels ofC andP . There is only one more
label which can be read, that isS. Each of the writes (to
P,C, or S) are also possible.

Finally, we consider the card with the maxi-
mal number of reads, see Figure 8. The only

Name Read CP Card
Groups gC&gP

Privileges r〈P 〉, r〈C〉

Security
Method

r〈S〉:
switchTo( ReadCPSCard)

w〈C〉:
switchTo( ReadCP Write C Card)

w〈P 〉:
switchTo( ReadCP Write P Card)

w〈S〉:
switchTo( ReadCP Write S Card)

Figure 7. Read CP Card

transition for Read CPSCard is a transition to
Read CPSWrite S Card which additionally en-
ables a write to objects with labelS.

Name Read CPS Card
Groups gC&gP &gS

Privileges r〈C〉, r〈S〉, r〈P 〉

Security
Method

w〈S〉:
switchTo( ReadCPSWrite S Card)

Name Read CPS Write S Card
Groups gC & gP & gS

Privileges r〈C〉, r〈S〉, r〈P 〉, w〈S〉
Security
Method

Figure 8. Read CPS Card and
Read CPS Write S Card

4. Optimizations

While the algorithm given in Section 3.2 is sufficient
to generate the needed Security Cards, it generates 24
Security Cards for our small example. In this section, we
describe some optimizations which significantly reduce
the number of security cards generated.

The optimizations considered here are:

no writers: as the number of labels read increases the
number of labels which can be written decreases.
This optimization is applicable when there are no
labels which can be written given the set of labels
read.
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lattice: this takes advantage of lattice (and partial lat-
tice) structures to remove Security Cards with
fewer read permissions in favor of those with more
read permissions.

bottom: remove cards which do not have read permis-
sion on the most readable label in favor of those
that do.

write augmentation: this optimization removes a Se-
curity Card which contains only read permissions
in favor of one which contains the same read plus
an additional write.

We note that all of these operations have enabling con-
ditions which must be satisfied before they are applied.

4.1. No writers

Consider the case where the algorithm generates a
Security Card with no write permissions and no write
transitions. In this case it is impossible to do any more
writes by the process.

For each read transitions (i.e. on permission
r〈X〉) in such a card is replaced with a transition
to SingletonReadXCard , which contains the sin-
gle permissionr〈X〉. The SingletonReadXCard
has only read transitions and all transitions are to
SingletonReadXCard .

While the no writes optimization does not play a
role in our running example, it is important in large
distributed systems. In such a case, the system would
largely decompose, for example, into departments.
Reads from two different departments would likely have
no destination label in common that they could write to.
Hence, the Security Card would not need to keep track
of combinations of such labels, potentially dramatically
reducing the number of Security Cards generated.

4.2. Lattice optimization

One very elegant property of lattices is that the com-
bination of labels always results in a single label. Hence,
in lattice based representations it is not necessary to rep-
resent subsets of labels read.

We hence consider the conditions under which this
property can be exploited. Letg v g′ meaning that in
every state, each user ing is also ing′. Then the lattice
property holds when both

r(x) v r(y)

and

∀z|mayflow(x,z)↓flow(x, z) v flow(y, z)

where

flow(l, l′) = r(l) ∩ w(l′) ∩mayflow(l, l′) .

The meaning of this property is that the permissions for
y are a superset of the permissions forx and so that (1)
if a process can readx it can ready and (2) whethery
is actually read or not is immaterial for information flow
since the information flow restraints having readx are
stricter than those having ready.

If the lattice property holds, then a card whose per-
missionsp include r〈x〉 but not r〈y〉 can be replaced
with the card whose permissions arep ∪ r〈y〉.

Example:
Name Read C Card
Groups gC

Privileges r〈C〉

Security
Method

r〈P 〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadCS Card)

w〈P 〉:
switchTo(ReadC Write P Card)

w〈C〉:
switchTo(ReadC Write C Card)

w〈S〉:
switchTo(ReadC Write S Card)

Given the above security card,r〈P 〉 can be added be-
cause for x = C and y = P, the Lattice optimization re-
quirements are met. This results in the elimination of
the ReadC Card, and all references to it being replaced
with the ReadCP Card, shown in Figure 7.

4.3. Bottom optimization

The bottom element in a lattice,⊥ can be added to
every Security Card. Since the mayflows can describe
non-lattice structures, this optimization is possible when
for all labelsx ∈ L:

r(x) v r(⊥)

mayF low(⊥, x) ↓

and

w(x) v r(⊥) ∩mayflow(⊥, x) ∩ w(x) .
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The second and third means that the mayflow restric-
tions added by having read⊥ do not limit what can be
written.

If this condition holds, Security Cards with permis-
sionsp not containingr〈⊥〉 are replaced by ones that
have permissionsp ∪ r〈⊥〉.

Example: Consider the initial security card shown in
Figure 6. This card does not have any privileges, so
it is a prime candidate for the bottom optimization. P
is the most readable label, and since ar〈P 〉 does not
limit what labels can be written, it satisfies the bottom
optimization. References to the initial security card can
be replaced with the ReadP Card shown below.

Name Read P Card
Groups gP

Privileges r〈P 〉

Security
Method

r〈C〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadPSCard)

w〈P 〉:
switchTo(ReadP Write P Card)

w〈C〉:
switchTo(ReadP Write C Card)

w〈S〉:
switchTo(ReadP Write S Card)

4.4. Write augmentation optimization

The next optimization is called write augmentation,
since it replaces a Security Card with one that has an
additional write permission.

If a Security Card without any write privileges,s0 has
a transition to a Security Cards1 with a write privilege
and a user is a member of every groups ons0 iff she is a
member of every group ons1, make all transitions tos0

be instead transitions tos1 and removes0.

Example: Consider the ReadCPSCard shown in Fig-
ure 8 which contains only read privileges. Since a
mayFlow for each C, P, and S exists to S, the secu-
rity method transition tow〈S〉 exists. Lastly, since the
groups for ReadCPSWrite S Card, also shown in the
figure, are the same as for the ReadCPSCard, any user
is allowed access to either both or neither card. Having
met the requirements for the write augmentation opti-
mization, any reference to ReadCPSCard can be re-
placed with ReadCPSWrite S Card.

4.5. Applying optimization to the running exam-
ple

Table 1 details each removed card along with the op-
timization and conditions which made it possible. For
some cards, multiple optimizations can apply; however,
only one will be listed. In the table, lattice(l,l’) means
that the lattice properties hold for x =l and y =l’. Recall
that for this example that mayFlow(l,l) = r〈l〉 = w〈l〉.

The optimizations result in removal of Security Cards
and a corresponding change in transitions between Se-
curity Cards. After these optimizations, there remains 7
Security Cards, down from 24 before optimizations. The
resulting Security Cards after optimizations are shown
in Appendix B.

5. Related Work

The work presented here is part of a broader line
of work by the authors in constructing high assurance
authorization systems, which are sufficiently expressive
and have lower complexity than alternative schemes.
Because of the anonymous submission requirements, we
will summarize our related work without giving detailed
citations.

• The high level specification and administrative con-
trols have been published in a major security con-
ference, in which we both defined the mechanism
and show that an algorithm exists to determine
when the administrative approvals defined in Sec-
tion 2.2 are needed.

• We have submitted for publication a proof that it
is decidable what authorizations can be allowed
within our system. As far as we know, this is the
first proof of decidability for general purpose ad-
ministrative controls.

• A detailed description of the kernel-level mecha-
nism of kernelSechas been accepted in a security
conference, which more fully describeskernelSec
including mechanisms which support dynamic sep-
aration of duty, discretionary access controls and
our group mechanism.

• We have submitted for publication a description of
thekernelSecimplementation to an Operating Sys-
tems conference.

We have implemented thekernelSeclayer in the Linux
kernel, primarily using LSM [26], and in a systems pro-
cess called kernelSecD. The factoring has also been im-
plemented.
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Eliminated Replaced by
Card Card

Reads Writes Reads Writes Optimization Conditions satisfied
P bottom bottom(P)

P P P write augmentation r〈P 〉 = w〈P 〉 = mayFlow(P,P)
C C,P lattice lattice(C,P)
S S S write augmentation r〈S〉 = w〈S〉
C,P C,P C write augmentation r〈CP 〉 = w〈C〉 = mayFlow(P,C)
P,S P,S S write augmentation r〈PS〉 = w〈S〉 = mayFlow(P,S)
C,S C,S S write augmentation r〈CS〉 = w〈S〉 = mayFlow(C,S)
C,P,S P,C,S S write augmentation r〈PCS〉 = w〈S〉 = mayFlow(P,S) = mayFlow(C,S)

P P P bottom bottom(P)
C P C bottom bottom(P)
S P S bottom bottom(P)

C P C,P P lattice lattice(C,P)
C C C,P C lattice lattice(C,P)
C S C,P S lattice lattice(C,P)
S S P,S S lattice lattice(S,P)
P,S S P,C,S S lattice lattice(S,C)
C,S S P,C,S S lattice lattice(C,P)

Table 1. Optimization table

There are three types of related work discussed here.
The first is the high-level specification of authorization,
the second is the low-level specification of authorization,
and finally the focus of this paper which is the translation
between the high and low level.

Specification of permissions in terms of authorization
properties is, of course, not new. Lattice based schemes
do this in terms of a (rigid) hierarchy, in which infor-
mation flow confidentiality or integrity can never be vi-
olated (within the system). However, one of the reasons
for the growing popularity of Type Enforcement is that
it is able to enforce these properties in part of the system
and violate them in other parts, thus enabling specifica-
tion of downgrade, etc.

Our high level specification is similar to RBAC in
the sense that it is based on groups (or roles) and that
it is compositional. However, our high-level specifica-
tion differs in that it is designed to directly represent
authorization properties. The notion of roles goes back
to at least Landwehr, Heitmeyer, and McLean’s elegant
work on military message systems [17]—one of the is-
sues they site is dynamically associating roles with users
so that the users select their role—we note that compara-
ble semantics (although not covered here) is to execute
a program and thus (implicitly) select a role.

Jajodia, Samarati, and Subrahmanian [13] describe
a logical language for expressing authorizations. Poli-
cies are expressed by rules which enforce derivation

of authorizations, conflict rules, and integrity constraint
checking. Their approach is very general; ours is spe-
cialized for authorization properties in that it embeds
the properties and their analysis (decidability) in its con-
struction. We believe this reduces the complexity of our
specifications but this may be at the cost of some expres-
siveness.

The Ponder specification language [5] is for dis-
tributed systems, is object-oriented, and is broader in
scope than our project. It is declarative, like our ap-
proach, but does not support administrative controls.

As we have noted, thekernelSeclayer is most similar
to Type Enforcement, which is a version of the access
matrix. However, Security Cards have more dynamic
features (e.g., groups and transitions on arbitrary miss-
ing permissions). But what drives the design of Secu-
rity Cards is the goal of having them support authoriza-
tion properties and hence the design of Security Cards is
tuned to these needs.

Other authorization systems have allowed changes to
the set of permissions based on the accesses the process
makes. For example, CMW allows the label on an object
to “float up” (within some range) rather than to deny a
write due to information flow restrictions [2]; LOMAC
enables the automatic downgrade of the process if an
untrusted file is read [7].

We do not consider covert channels [16, 8, 9] here,
because although they are necessary for MilSec systems
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they do apply only to systems whose mayflow graphs
are acyclic and they add a great deal of complexity to
the specification of what is authorized.

Specifying permissions for access matrix level imple-
mentations is tedious. Least privilege [19] means that
processes should get the minimum privileges allowed.
An alternative to factoring used in SELinux [24] is to
run the application in “permissive mode” to determine
which permissions are used by an application; and then
when run the application in production mode with the
needed permissions. Analysis tools, such as [10] can
verify information flow properties.

Our high level specification is written in a way that is
closer to access control lists than capabilities. We be-
lieve that it is possible to adapt factoring to apply to
capability based systems such as EROS [22]. For ex-
ample, EROS currently supports lattice-based semantics
through a combination of reference monitor plus sealing
mechanism [23] (without some extra mechanism, this
would be impossible [14]); by generalizing the refer-
ence monitor we believe that more authorization proper-
ties could be provided in the authorization system rather
than relying on specially coded components in the OS.

Two earlier systems provided a high level specifica-
tion which was translated into an implementation-level
checker. These systems differ from our system signif-
icantly in the high-level specification and the low-level
implementation. Neither of these systems supported ad-
ministrative controls

The system which is closest to ours is Miró [11]
which consists of a instance language to specify secu-
rity configurations and a constraint language to specify
security policies. Since Miŕo was mapped to existing
access matrix level implementation, it neither could sup-
port the semantics described in this paper (e.g., informa-
tion flow restrictions), nor could the low-level be mod-
ified to improve efficiency. Our system reuses compo-
nents between layers, for example the group structure.

Hoagland, Pandey, and Levitt [12] describe a graph-
ical language LaSCO which is then translated into Java
code. This language cannot represent information flow
constraints and of course its target is not an access ma-
trix.

6. Conclusions

We have described a three tiered authorization system
consisting of:

administrative controls to enable controlled changes
to what is authorized;

high level specification for a succinct and stateless
specification of the current authorizations; and

kernelSec our low level access controls implemented
in the Linux Kernel.

The top two layers of our system have decidable in-
formation flow authorization properties, meaning that
whether information flow confidentiality or information
flow integrity holds can be determined algorithmically.
Moreover in our systems, as in Type Enforcement, such
properties can be guaranteed to hold for some objects
and be violated for others. These guarantees are made at
a label granularity. We believe that this level is signif-
icantly easier to specify and analyze than at the access
matrix level (in our case,kernelSec).

We have also developed an access matrix level mech-
anism which is efficient calledkernelSec. In addition
to efficiency, its goal is to be sufficient for application-
level authorization needs so that application level code
for authorization is greatly reduced or eliminated. An
additional goal is to be able automatically generate the
kernelSeclayer from the higher level specifications, and
that too has effected thekernelSecdesign; we could not
have generated existing access matrix level targets with-
out a loss of flexibility.

In this paper we describe a factoring algorithm
which takes our high level specification and produces
a kernelSecconfiguration. The naive algorithm, while
straightforward (it is given in the paper) produces far
too many Security Cards. We describe a number of opti-
mizations which dramatically reduce the number of Se-
curity Cards generated, from an initial 24 down to 7 for
our running example. We have provided separately an
information assurance argument which describes why
the factoring is sound.

We believe that this approach provides the best of
both worlds. A specification level which is optimized
to concisely describe the authorization needs and an im-
plementation level which is optimized for performance
and guaranteed to provide the semantics needed by the
higher level specification. To bridge the gap and remove
error from the translation, algorithmic factoring ensure
equivalence of the two representations. This method of
specifying authorizations is analogous to the compila-
tion high-level programs into machine language. This,
we believe, will ultimately be the way all authorizations
are specified.
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A. Non-Optimized Security Cards

Name InitialCard
Groups
Privileges

Security
Method

r〈C〉:
switchTo(ReadC Card)

r〈P 〉:
switchTo(ReadP Card)

r〈S〉:
switchTo(ReadS Card)

w〈P 〉:
switchTo(WriteP Card)

w〈C〉:
switchTo(WriteC Card)

w〈S〉:
switchTo(WriteS Card)

Name Read P Card
Groups gP

Privileges r〈P 〉

Security
Method

r〈C〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadPSCard)

w〈P 〉:
switchTo(ReadP Write P Card)

w〈C〉:
switchTo(ReadP Write C Card)

w〈S〉:
switchTo(ReadP Write S Card)

Name Read C Card
Groups gC

Privileges r〈C〉

Security
Method

r〈P 〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadCS Card)

w〈P 〉:
switchTo(ReadC Write P Card)

w〈C〉:
switchTo(ReadC Write C Card)

w〈S〉:
switchTo(ReadC Write S Card)
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Name Read S Card
Groups gS

Privileges r〈S〉

Security
Method

r〈P 〉:
switchTo(ReadPSCard)

r〈C〉:
switchTo(ReadCS Card)

w〈S〉:
switchTo(ReadS Write S Card)

Name Read CP Card
Groups gC&gP

Privileges r〈C〉, r〈P 〉

Security
Method

r〈S〉:
switchTo(ReadCPSCard)

w〈P 〉:
switchTo(ReadCP Write P Card)

w〈C〉:
switchTo(ReadCP Write C Card)

w〈S〉:
switchTo(ReadCP Write S Card)

Name Read PS Card
Groups gP &gS

Privileges r〈P 〉, r〈S〉

Security
Method

r〈C〉:
switchTo(ReadCPSCard)

w〈S〉:
switchTo(ReadPSWrite S Card)

Name Read CS Card
Groups gC&gS

Privileges r〈C〉, r〈S〉

Security
Method

r〈P 〉:
switchTo(ReadCPSCard)

w〈S〉:
switchTo(ReadCS Write S Card)

Name Read CPS Card
Groups gC&gP &gS

Privileges r〈C〉, r〈P 〉, r〈S〉

Security
Method

w〈S〉:
switchTo(ReadCPSWrite S Card)

Name Write P Card
Groups gP

Privileges w〈P 〉

Security
Method

r〈P 〉:
switchTo(ReadP Card)

r〈C〉:
switchTo(ReadC Card)

r〈S〉:
switchTo(ReadS Card)

w〈C〉:
switchTo(WriteC Card)

w〈S〉:
switchTo(WriteS Card)

Name Write C Card
Groups gC

Privileges w〈C〉

Security
Method

r〈P 〉:
switchTo(ReadP Card)

r〈C〉:
switchTo(ReadC Card)

r〈S〉:
switchTo(ReadS Card)

w〈P 〉:
switchTo(WriteP Card)

w〈S〉:
switchTo(WriteS Card)

Name Write S Card
Groups gS

Privileges w〈S〉

Security
Method

r〈P 〉:
switchTo(ReadP Card)

r〈C〉:
switchTo(ReadC Card)

r〈S〉:
switchTo(ReadS Card)

w〈P 〉:
switchTo(WriteP Card)

w〈C〉:
switchTo(WriteC Card)
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Name Read P Write P Card
Groups gP

Privileges r〈P 〉, w〈P 〉

Security
Method

r〈C〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadPSCard)

w〈C〉:
switchTo(ReadP Write C Card

w〈S〉:
switchTo(ReadP Write S Card

Name Read P Write C Card
Groups gP &gC

Privileges r〈P 〉, w〈C〉

Security
Method

r〈C〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadPSCard)

w〈P 〉:
switchTo(ReadP Write P Card)

w〈S〉:
switchTo(ReadP Write S Card)

Name Read P Write S Card
Groups gP &gS

Privileges r〈P 〉, w〈S〉

Security
Method

r〈C〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadPSCard)

w〈P 〉:
switchTo(ReadP Write P Card)

w〈C〉:
switchTo(ReadP Write C Card)

Name Read C Write P Card
Groups gP &gC&gD

Privileges r〈C〉, w〈P 〉

Security
Method

r〈P 〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadCS Card)

w〈C〉:
switchTo(ReadC Write C Card)

w〈S〉:
switchTo(ReadC Write S Card)

Name Read C Write C Card
Groups gC

Privileges r〈C〉, w〈C〉

Security
Method

r〈P 〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadCS Card)

w〈P 〉:
switchTo(ReadC Write P Card)

w〈S〉:
switchTo(ReadC Write S Card)

Name Read C Write S Card
Groups gC&gS

Privileges r〈C〉, w〈S〉

Security
Method

r〈P 〉:
switchTo(ReadCP Card)

r〈S〉:
switchTo(ReadCS Card)

w〈P 〉:
switchTo(ReadC Write P Card)

w〈C〉:
switchTo(ReadC Write C Card)

Name Read S Write S Card
Groups gS

Privileges r〈S〉, w〈S〉

Security
Method

r〈P 〉:
switchTo(ReadPSCard)

r〈S〉:
switchTo(ReadCS Card)

Name Read CP Write P Card
Groups gC&gP &gD

Privileges r〈C〉, r〈P 〉, w〈P 〉

Security
Method

r〈S〉:
switchTo(ReadCPSCard)

w〈C〉:
switchTo(ReadCP Write C Card)

w〈S〉:
switchTo(ReadCP Write S Card)

Name Read CP Write C Card
Groups gC&gP

Privileges r〈C〉, r〈P 〉, w〈C〉

Security
Method

r〈S〉:
switchTo(ReadCPSCard)

w〈P 〉:
switchTo(ReadCP Write P Card)

w〈S〉:
switchTo(ReadCP Write S Card)
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Name Read CP Write S Card
Groups gC&gP &gS

Privileges r〈C〉, r〈P 〉, w〈S〉

Security
Method

r〈S〉:
switchTo(ReadCPSCard)

w〈P 〉:
switchTo(ReadCP Write P Card)

w〈C〉:
switchTo(ReadCP Write C Card)

Name Read PS Write S Card
Groups gP &gS

Privileges r〈P 〉, r〈S〉, w〈S〉

Security
Method

r〈C〉:
switchTo(ReadCPSCard)

Name Read CS Write S Card
Groups gC&gS

Privileges r〈C〉, r〈S〉, w〈S〉

Security
Method

r〈P 〉:
switchTo(ReadCPSCard)

Name Read CPS Write S Card
Groups gC&gP &gS

Privileges r〈C〉, r〈P 〉, r〈S〉, w〈S〉
Security
Method

B. Optimized Security Cards

Name Read P Write P Card
Groups gP

Privileges r〈P 〉, w〈P 〉

Security
Method

r〈C〉:
switchTo(ReadCP Write C Card)

r〈S〉:
switchTo(ReadCPSWrite S Card)

w〈C〉:
switchTo(ReadP Write C Card

w〈S〉:
switchTo(ReadP Write S Card

Name Read P Write C Card
Groups gP &gC

Privileges r〈P 〉, w〈C〉

Security
Method

r〈C〉:
switchTo(ReadCP Write C Card)

r〈S〉:
switchTo(ReadCPSWrite S Card)

w〈P 〉:
switchTo(ReadP Write P Card)

w〈S〉:
switchTo(ReadP Write S Card)

Name Read P Write S Card
Groups gP &gS

Privileges r〈P 〉, w〈S〉

Security
Method

r〈C〉:
switchTo(ReadCP Write C Card)

r〈S〉:
switchTo(ReadCPSWrite S Card)

w〈P 〉:
switchTo(ReadP Write P Card)

w〈C〉:
switchTo(ReadP Write C Card)

Name Read CP Write P Card
Groups gC&gP &gD

Privileges r〈C〉, r〈P 〉, w〈P 〉

Security
Method

r〈S〉:
switchTo(ReadCPSWrite SCard)

w〈C〉:
switchTo(ReadCP Write C Card)

w〈S〉:
switchTo(ReadCP Write S Card)

Name Read CP Write C Card
Groups gC&gP

Privileges r〈C〉, r〈P 〉, w〈C〉

Security
Method

r〈S〉:
switchTo(ReadCPSWrite S Card)

w〈P 〉:
switchTo(ReadCP Write P Card)

w〈S〉:
switchTo(ReadCP Write S Card)

Name Read CP Write S Card
Groups gC&gP &gS

Privileges r〈C〉, r〈P 〉, w〈S〉

Security
Method

r〈S〉:
switchTo(ReadCPSWrite S Card)

w〈P 〉:
switchTo(ReadCP Write P Card)

w〈C〉:
switchTo(ReadCP Write C Card)
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Name Read CPS Write S Card
Groups gC&gP &gS

Privileges r〈C〉, r〈P 〉, r〈S〉, w〈S〉
Security
Method
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