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Overview

Xen is a VMM (also called a Hypervisor)

Xen was originally written to support paravirtualizaiton

And Linux and Windows were ported to Xen

But Windows was never more than a proof of concept

Xen has been extended to support AMD and Intel
virtualization extensions

Xen is the default base for cloud computing
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Non-interpreter VMs

DomU DomU’ Dom0

VMM

hardware

Small VMM, 100K lines of code

Huge Dom0, 12M lines of code

Arbitrary number of DomU’s

Each DomU is created with a new number

Work split between VMM and Dom0
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Processor assumptions

We’re going to assume that at most one processor is
executing in DomU

This simplifies concurrency control within the Kernel

(Without this assumption, the kernel needs to lock all
resources before use to prevent race condition, needs to worry
about memory consistency)

Note that this is the default for Xen

Enabling multiple processors to concurrently execute in the
OS is a large undertaking, it took 3 years to do this with Linux
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Things to ignore

There are a lot of things that are not relevant for now. Ignore all
discussion of

HVM (hardware virtual machine). (We will run
paravirtualized).

Hypercalls which can be made only from Dom0 .

which are a way of writing code which is both
paravirtualizable and natively executable

64-bit code, we are running 32-bit code (even on a 64-bit
hypervisor)

Xen expects all 32-bit Intel code to be PAE enabled. This effects
only paging.
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Xen vs. Architecture

Architecture Xen purpose
rings rings/regions privilege and isolation

interrupt event asynchronous notification

bios XenStore information used to configure OS
start info

system calls hypercall invoke more privileged code

virtual memory virtual memory memory management

devices device front-ends I/O

fence barriers ensure memory operations ordered
between Dom0 and DomU
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Segmentation
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Segmentation

Segmentation

The x86 architecture supports both

Segmentation and
Paging

A virtual address is first translated by segmentation, and then
the resulting linear address is paged.

OS designers have largely opted to ignore segmentation, in
Linux

KERNEL CS ( Ke rne l code segment , base=0, l i m i t=4GB, DPL=0)
KERNEL DS ( Ke rne l data segment , base=0, l i m i t=4GB, DPL=0)
USER CS ( User code segment , base=0, l i m i t=4GB, DPL=3)
USER DS ( User data segment , base=0, l i m i t=4GB, DPL=3)

Thus Xen starts up with a flat segmented address space

each segment starts at 0 and is 232 bytes in size.
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Memory map

0xffffffff

0xfc000000
Xen Hypervisor

0xc0000000 Kernel

0x00000000

User space
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Protection

Segments

CS Code segment: used for instruction accesses
SS Stack segment: used for stack accesses
DS Data segment: used for data accesses

In the x86, the CS determines the current ring.

And privileged instructions can only be executed in ring 0.

The paging mechanism also determines whether memory can
be accessed based on the ring.

Hence, the major effect of segmentation on OSs is it used to
determine the privileged level
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Rings of Protections

Rings (X86 32)

x86 architecture has 4 rings of protection

ring 0 is the most privileged

normally, an OS runs in ring 0 and user space runs in ring 3

this is a traditional UNIX model

but it is possible to use the rings to provide better isolation,
for example OS kernel in ring 0 and device drivers in ring 1

ring i has limited access to ring j < i and unlimited access to
k ≥ i

Typical setup: Xen runs in ring 0, OS runs in 1, user space in
ring 3
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Traditional 32-bit OS on bare metal

kernel

Ring 0

Ring 1

Ring 2

Ring 3

User Space
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32-bit OS on Xen

VMM

kernel

Ring 0

Ring 1

Ring 2

Ring 3

User Space
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Rings (X86 64)

For the AMD64, it was decided two levels of privilege suffice

so it only has ring 0 and ring 3

Hence, on 64-bit Xen runs in ring 0

the OS and user space are in ring 3, but separate page tables
are used for each.

Architecture virtualization techniques add ring -1 for a VMM
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64-bit OS

kernel

Ring 0

Ring 3

User Space
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64-bit OS on Paravirtualized VM

VMM

Ring 0

Kernel

User Space

Jon A. Solworth Secure OS Design and Implementation Xen

Rings of Protections

64-bit OS on Hardware VM

VMM

kernel

Ring − 1

Ring 0

Ring 1

User Space
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Hypercalls

Hypercalls

Only Xen can execute privilege instructions, so the OS must
request these from Xen

To request Xen services, Hypercalls are made

There are Hypercalls for scheduling, paging, interrupts, ...

The inline C function invokes a CPP macro, hypercall2
which takes:

A return type
The name of the call
and 2 arguments, cmd and arg

s t a t i c i n l i n e i n t
HYPERVISOR sched op ( i n t cmd , u l o n g ar g )
{

return h y p e r c a l l 2 ( int , sched op , cmd , a rg ) ;
}

see include/hypercall-x86 32.h for some calls
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Hypercalls (cont’d)

hypercall2 (for two arguments) is a C pre-processor macro

It passes arguments through EAX, EBX, and ECX registers

It CALLs an address, with a (4096 byte) hypercall page

Each call, such as sched op, uses 32 bytes on the hypercall
page

This means that up to 128 hypercalls are possible, although
45 or so are in use

hypercall2 is ugly because

It uses advanced macro features
It embeds assembly language (asm volatile) in C code
It is architecture/Xen specific
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Hypercall page

The hypercall page is mapped into the kernel
(presumably execute only)

It contains the code that invokes Xen Hypercalls
(e.g., int 82)

and returns the value of the hypercall to hypercallx

By supplying this page, Xen controls the code which is on it
and thus can migrate to new interfaces if necessary.
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Traps and system calls

System calls

In addition to Hypercalls (from kernel to Xen), system calls
(from user space to kernel) are needed

Typically made with an interrupt x80 (alt.
SYSENTER/SYSEXIT or SYSCALL/SYSRET)

Parameters passed in registers (typ. EAX, EBX, ECX)

This causes control to pass to Xen

Xen then creates a register packet and then invokes the OS
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Traps

ethos/arch/x86/traps.c

Submits a virtual IDT to the hypervisor.

This consists of tuples

interrupt number
privilege ring
CS:EIP of handler.

The ’privilege ring’ field specifies the least-privileged ring that

can trap to that vector using a software-interrupt instruction
(INT).

does not effect hardware induced traps, which go to Xen since
they are not necessarily associated with the currently
executing Domain.

Jon A. Solworth Secure OS Design and Implementation Xen

Traps and system calls

Xen trap table

s t a t i c t r a p i n f o t t r a p t a b l e [ ] = {
{ 0 , 0 , KERNEL CS , ( u l o n g ) d i v i d e e r r o r } ,
{ 1 , 0 , KERNEL CS , ( u l o n g ) debug } ,
{ 3 , 3 , KERNEL CS , ( u l o n g ) i n t 3 } ,
{ 4 , 3 , KERNEL CS , ( u l o n g ) o v e r f l o w } ,
{ 5 , 3 , KERNEL CS , ( u l o n g ) bounds } ,
{ 6 , 0 , KERNEL CS , ( u l o n g ) i n v a l i d o p } ,
{ 7 , 0 , KERNEL CS , ( u l o n g ) d e v i c e n o t a v a i l a b l e } ,
{ 9 , 0 , KERNEL CS , ( u l o n g ) c o p r o c e s s o r s e g m e n t o v e r r u n } ,
{ 10 , 0 , KERNEL CS , ( u l o n g ) i n v a l i d T S S } ,
{ 11 , 0 , KERNEL CS , ( u l o n g ) s e g m e n t n o t p r e s e n t } ,
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Xen trap table

{ 12 , 0 , KERNEL CS , ( u l o n g ) s t a c k s e g m e n t } ,
{ 13 , 0 , KERNEL CS , ( u l o n g ) g e n e r a l p r o t e c t i o n } ,
{ 14 , 0 , KERNEL CS , ( u l o n g ) p a g e f a u l t } ,
{ 15 , 0 , KERNEL CS , ( u l o n g ) s p u r i o u s i n t e r r u p t b u g } ,
{ 16 , 0 , KERNEL CS , ( u l o n g ) c o p r o c e s s o r e r r o r } ,
{ 17 , 0 , KERNEL CS , ( u l o n g ) a l i g n m e n t c h e c k } ,
{ 19 , 0 , KERNEL CS , ( u l o n g ) s i m d c o p r o c e s s o r e r r o r } ,
{0 x80 , 3 , KERNEL CS , ( u l o n g ) s y s c a l l } ,
{ 0 , 0 , 0 , 0}

} ;

void
i n i t ( void )
{

HYPERVISOR set t rap tab le ( t r a p t a b l e ) ;
}
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Interrupt use

Part VI

Interrupt use
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Interrupts and Xen events

System calls and Hypervisor calls are transitions from less
privileged to more privileged.

They are caused by the less privileged level asking for
privileged services

But it is also necessary for the more privileged levels to assert
control over what can call it and how the call is handled

At the hardware level, this is done through interrupts

Which bring control to a (presumably lower) level

The level is determined by the code segment

The code segment embeds the privilege (i.e., ring) level

The Xen to Kernel corresponding are called (Xen) events
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Interrupts/events

Events (Interrupts) cause transitions between levels.

From the kernel viewpoint,

these transitions look like system calls
with the exception that they can occur when already in the
kernel.

In terms of the less privilege level, it is not expecting an
interrupt

So after an interrupt, it is important to return to the less
privileged level as if no interrupt occurred.

At the hardware level, this is called precise interrupts in
which the user-visible state is

preserved at the time of interrupt
restored upon return from interrupt
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Interrupt code in the kernel

Since an interrupt/event can arrive when the kernel is doing
something else

It is important to prevent race conditions

It is possible to lock all data structures used by the interrupt

But locking must be done in both the interrupt code (small)
and the non-interrupt code

To simplify this issue, minimum processing is done at the time
of interrupt (upper half)

For example, copying packet from an ethernet device

And the remainder of processing deferred to some convenient
time (bottom half)

Such as just before the kernel is going to return to user space

Jon A. Solworth Secure OS Design and Implementation Xen



Interrupt use

Advantages of split interrupt handling

Locks are minimized in upper half and in the remainder of the
kernel

Lock bugs are really unpleasant

Forget a lock, and you have race condition which is difficult to
debug
Locks also have performance implications since they block
execution

Upper half does all time-critical functions,

maximizing concurrency of CPU with devices
preventing lost interrupts and thus lost packets
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Xen event use

There are a fixed number of interrupt types in a processor

There is a Xen event channel for each of these interrupts

An endpoint of a channel is called a port

In addition, channels may be created for inter-domain
communication

A Xen event must be sent along a channel

to send an event an entity in Xen, must have access to the
channel.

To receive an event, must have a handler (procedure)
associated with the event in the receiver.

Obviously, if this is inter-domain communication

the channel must be created (receiver)
the handler must be installed for that event (receiver)
the senders must be informed of the name of the channel
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Event types

Three broad categories of events:

interdomain,
physical IRQ, and
virtual IRQ

physical IRQ are for Domain 0 or a driver Domain

virtual IRQ are for virtualized devices, such as clock, console

interdomain events are used for data exchange between
domains (and are used to indicate data waiting or consumed.

interdomain events, unlike interrupts, are bidirectional
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Xen events

Binding the timer virtual interrupt

e v t c h n b i n d v i r q t op ;

op . v i r q = VIRQ TIMER ;
op . vcpu = 0 ;
i n t s t a t u s = HYPERVISOR event channel op (

EVTCHNOP bind virq , &op ) ;
i f (0 != s t a t u s ) { /∗ h a n d l e e r r o r ∗/ }

The hypercall set the port number, op.port.

Some channels are bound at Domain load time, including

XenStore and console
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Allocate an unbound interdomain event channel

e v t c h n a l l o c u n b o u n d t op ;
op . dom = DOMID SELF ;
op . remote dom = remote domain ;
i n t s t a t u s = HYPERVISOR event channel op (

EVTCHNOP alloc unbound , &op ) ;
i f (0 != s t a t u s ) { /∗ h a n d l e e r r o r ∗/ }

An interdomain event channel has 2 domains,
the creating and opposite domains.

The creating domain creates the channel (and its associated
port)

op.port contains port number
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Remote binding of an interdomain event channel

The creating domain sends to the opposite domain
creating port and creating domain

These values are typically sent by writing to the XenStore

The opposite domain binds to the event channel

e v t c h n b i n d i n t e r d o m a i n t op ;
op . r e m o t e p o r t = c r e a t i n g p o r t ;
op . remote dom = c r e a t i n g d o m a i n ;
i n t s t a t u s = HYPERVISOR event channel op (

EVTCHNOP bind interdomain , &op ) ;
i f (0 != s t a t u s ) { /∗ h a n d l e e r r o r ∗/ }
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Getting started

Its a good idea to start with all the events masked

typically, OS initialization brings up services one at a time and
it is only after a service is initialized that the OS is ready to
handle the corresponding event.

when binding a new event, shared info .evtchn pending[0] bit
should be cleared

event delivery is disabled at boot time. So it is necessary to

clear shared info . vcpu info [0]. evtchn upcall mask
check shared info . vcpu info [0]. evtchn upcall pending and if
set handle the event and clear the bit.

Note that 0 is for VCPU 0, the only CPU in use by nanoOS.
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Xen events

Sending an (interdomain) event

s t r u c t e v t c h n s e n d e v e n t ;
e v e n t . p o r t = portNumber ;
i n t s t a t u s = HYPERVISOR event channel op (

EVTCHNOP send , &e v e n t ) ;
i f (0 != s t a t u s ) { /∗ h a n d l e e r r o r ∗/ }
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Initializing events

s t a t i c e v t c h n h a n d l e r t h a nd l e r s [NUM CHANNELS ] ;

vo id EVT IGN( e v t c h n p o r t t port , s t r u c t p t r e g s ∗ r e g s ) {} ;

// I n i t i a l i s e the even t h a nd l e r s
vo id i n i t e v e n t s ( vo id )
{

// Set the even t d e l i v e r y c a l l b a c k s
HYPERVISOR set ca l lbacks (

FLAT KERNEL CS , ( u long ) h y p e r v i s o r c a l l b a c k ,
FLAT KERNEL CS , ( u long ) f a i l s a f e c a l l b a c k ) ;

// Set a l l h a n d l e r s to i gno r e , and mask them
f o r ( u i n t i=0 ; i<NUM CHANNELS ; i++)
{

h and l e r s [ i ] = EVT IGN ;
SET BIT ( i , s h a r e d i n f o . evtchn mask [ 0 ] ) ;

}
// Al low u p c a l l s .
s h a r e d i n f o . v c p u i n f o [ 0 ] . e v t c hn up c a l l ma s k = 0 ;

}
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find a vcpu which can process the event on the channel

This describes what Xen does to find a VCPU for an event

1: findEligibleVCPU(channel)
2: if channel bound to vcpu then
3: if unmaskedEvents(vcpu) then
4: return {vcpu}
5: end if
6: else
7: return {v : v ∈ vcpuSet|unmaskedEvents(v))}
8: end if
9: return {}
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Event masking

This describe what happens (In Xen) when an event arrives

1: if event already pending on channel then
2: return
3: end if
4: set pending bit for channel
5: if channel masked then
6: return
7: end if
8: if ∃ vcpu ∈ findEligibleVCPU(channel) then
9: set vcpu’s pending flag

10: set vcpu’s event selector
11: deliver event via upcall
12: end if
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Xen events

Callbacks

The number of events per domain is limited to 1024 (32 bits
per word times 32 words)

A default handler, EVT IGN which when called does nothing

like all handler, it is passed the port number and the registers

HYPERVISOR set callbacks gives two callback (from Xen to
DomU)

hypervisor callback calls the specific handler for the event, it
is assembly language which calls C

for each possible channel, the default handler is defined and
the corresponding evtchn mask is set (still not accepting
events)

Now the CPU’s events are unmasked
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Event callbacks

u i n t eventPendingAndUnmasked ( u i n t word ) {
return s h a r e d i n f o . e v t c h n p e n d i n g [ word ] &

˜ s h a r e d i n f o . evtchn mask [ word ] ;
}

void d o h y p e r v i s o r c a l l b a c k ( s t r u c t p t r e g s ∗ r e g s ) {
v c p u i n f o t ∗ vcpu = &s h a r e d i n f o . v c p u i n f o [ 0 ] ;
// Make s u r e we don ’ t l o s e t he edge on new e v e n t s . . .
vcpu−>e v t c h n u p c a l l p e n d i n g = 0 ;
// Set th e pend ing s e l e c t o r to 0 and
// g e t t he o l d v a l u e a t o m i c a l l y
u i n t p e n d i n g S e l e c t o r

= xchg(&vcpu−>e v t c h n p e n d i n g s e l , 0 ) ;
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Event callbacks

whi le ( p e n d i n gS e l e c t o r != 0)
{

// Get the f i r s t b i t o f the s e l e c t o r and c l e a r i t
u i n t eventWord = f i r s t b i t ( p e n d i n gS e l e c t o r ) ;
p e n d i n gS e l e c t o r &= ˜(1 << eventWord ) ;
u i n t even t ;

// Whi le e v en t s a r e pend ing on unmasked po r t s ( book bug )
whi le ( even t = eventPendingAndUnmasked ( eventWord ) )
{

// Find the f i r s t wa i t i n g even t i n the eventWord
u i n t e v e n tB i t = f i r s t b i t ( even t ) ;

// Combine the two o f f s e t s to ge t the po r t
e v t c h n p o r t t po r t = ( eventWord << 5) + ev en tB i t ;
// Handle the even t
h and l e r s [ po r t ] ( port , r e g s ) ;
// C l e a r the pend ing f l a g
CLEAR BIT( s h a r e d i n f o . e v t chn pend i ng [ 0 ] , e v e n tB i t ) ;

}
}

}
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Other issues with event call backs

hypervisor callback is an assembly language routine

it is invoked by the Xen hypervisor when both the event and
VCPU is unmasked

It calls the C routine do hypervisor callback

Which calls the individual handlers

Still need to set up real handlers

these are set up one at a time as associated service is
initialized and then

The event channel is unmasked
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Xen events

Use of event handlers

Initialize everything, including handlers
Then enter the main event loop
When a hardware event occurs, the interrupt mechanism
disables interrupts
Hardware interrupts enabled by return from interrupt, Xen
events enabled by assembly language code for rti processing

// main e v e n t l o o p
whi le ( 1 ) {

c l i ( ) ; // d i s a b l e e v e n t s
// do a l l p e r i o d i c p r o c e s s i n g , s e t t ime e v e n t s , e t c .
b o t t o m h a l f ( ) ;

s t i ( ) ; // re−e n a b l e e v e n t s

// b l o c k OS u n t i l a new e v e n t o c c u r s
HYPERVISOR sched op ( SCHED OP block , &op ) ;

}
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Event summary

pseudo device event channels must be bound to by DomU
(except for the prebound devices)

Interdomain event channels must be created in one domain
and bound to in a different domain.

An event can be sent with a hypercall on the channel’s port

An event can be received by polling, but a more typical
mechanism is to use a callback—a procedure which is invoked
when an unmasked event arrives.

Need to inform Xen of the callbacks

One callback needs to invoke callbacks for each individual
event
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Part VIII

System start
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System start

System Start

When an OS starts, it interrogates its surroundings (BIOS,
etc.) to determine the system configuration.

Thus it can determine whether it can run on the hardware,
and how to organize itself.

In Xen, this mechanism is replaced with the start info page

This page includes information which does not change (unless
the VM is migrated–i.e. resumed)

The start info page points shared info

shared info page is shared by Xen and the domain

it contains information which changes during execution

shared info includes interrupt/events and time keeping
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System start

Start info

s t r u c t s t a r t i n f o {
// The f o l l o w i n g a r e f i l l e d i n both on i n i t i a l boot and on resume .
char magic [ 3 2 ] ; // ”Xen−v . s ” . where v i s v e r s i o n and s s u b v e r s i o n
u long n r pag e s ; // Tota l pages a l l o c a t e d to t h i s domain .
u long s h a r e d i n f o ; // MACHINE add r e s s o f sha r ed i n f o s t r u c t .
u i n t 32 f l a g s ; // S IF xxx f l a g s .
x e n p f n t s t o r e m fn ; // MACHINE page number o f sha r ed page f o r XenStore .
u i n t 32 s t o r e e v t c h n ; // Event channe l f o r XenStore
union {

s t r u c t {
x e n p f n t mfn ; // MACHINE page number o f c on s o l e page .
u i n t 32 evtchn ; // Event channe l f o r c o n s o l e page .

} domU; // (dom0 con s o l e i n f o not i n c l u d e d )
} c on s o l e ;
// The f o l l o w i n g a r e f i l l e d on i n i t i a l boot , but not resume .
u long p t ba s e ; // VIRTUAL add r e s s o f page d i r e c t o r y .
u long n r p t f r ame s ; // Number o f b oo t s t r a p p . t . f rames .
u long m f n l i s t ; // VIRTUAL add r e s s o f page−f rame l i s t .
. . .
i n t 8 t cmd l i n e [MAX GUEST CMDLINE ] ;
} ; Jon A. Solworth Secure OS Design and Implementation Xen
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Start info notes

in general, nr pt frames ≤ nr pages

The difference is unallocated pages which can be mapped and
used for

OS data structures
User space pages

mfn list pseudo-physical to machine frame number map, i.e.
((ulong∗) mfn list )[p] is the machine frame number
associated with physical frame number p.
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Shared info

This data structure is stored in a page which is shared between
Xen and the domain

s t r u c t s h a r e d i n f o {
s t r u c t v c p u i n f o v c p u i n f o [ MAX VIRT CPUS ] ;
u l o n g e v t c h n p e n d i n g [ s i z e o f ( u l o n g ) ∗ 8 ] ;
u l o n g evtchn mask [ s i z e o f ( u l o n g ) ∗ 8 ] ;
// W a l l c l o c k t ime : updated o n l y by Xen . Guest ’ s
// g e t t i m e o f d a y ( ) s y s c a l l based on wc v a l u e s .
u i n t 3 2 w c v e r s i o n ; // V e r s i o n c o u n t e r

// ( s e e v c p u t i m e i n f o t )
u i n t 3 2 w c s e c ; // Secs 0 0 : 0 0 : 0 0 UTC, Jan 1 , 1 9 7 0 .
u i n t 3 2 wc nsec ; // Nanoseconds s i n c e w c s e c
s t r u c t a r c h s h a r e d i n f o a r c h ; // a r c h s p e c i f i c i n f o

} ;
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Shared info comments

The shared info page contains info about

for each virtual CPU (there can be as many as
MAX VIRT CPUS although only 1 is initially active.

There are 1024 possible ports (on 32-bit). book bug
(32/word and 32 words)

The wall clock time is on a shared page, so that Xen maybe
updating it while the OS is reading it, so

Xen makes the version number odd updating it
Xen then updates the value
Xen then increments the version number

Thus, the OS reads the version number, read the values, and
re-reads the version number to ensure that the number is both
even and unchanged
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System start

Virtual CPU Information

Part of the shared info

s t r u c t v c p u i n f o {
u i n t 8 t e v t c h n u p c a l l p e n d i n g ;
u i n t 8 t e v t c h n u p c a l l m a s k ;
u l o n g e v t c h n p e n d i n g s e l ;
s t r u c t a r c h v c p u i n f o a r c h ;
s t r u c t v c p u t i m e i n f o t ime ; // CPU t ime
} ; /∗ 64 b y t e s ( x86 ) ∗/

evtchn upcall pending : set to non-zero by Xen to indicate
pending events, cleared by OS. Only set if upcalls are masked.

evtchn upcall mask: if non-zero, no upcall activation. Cleared
when VCPU requests a block.

evtchn pending sel : a bit mask where bit i is set if there is a
pending event in the ith word, that is port 32i . . . 32i + 31.
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vcpu time info

s t r u c t v c p u t i m e i n f o {
// s e e xen . h f o r comments
u i n t 3 2 t v e r s i o n ;
// th e n e x t two v a l u e s a r e as o f th e l a s t t ime
// Xen updated them . To g e t c u r r e n t t ime ,
// must do a RDTSC, e t c .
u i n t 6 4 t t s c t i m e s t a m p ; // TSC
u i n t 6 4 t s y s t e m t i m e ; // Time , i n nanosecs ,

// s i n c e boot .

u i n t 3 2 t t s c t o s y s t e m m u l ;
i n t 8 t t s c s h i f t ;

}
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Part IX

Kernel startup code
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Kernel startup code

start kernel

char s t a c k [ 8 1 9 2 ] ; // s t a c k used by s t a r t k e r n e l

// s h a r e d i n f o d e c l a r e d i n assembly , typed h e r e
extern v o l a t i l e s h a r e d i n f o t s h a r e d i n f o ; // v o l a t i l e C keyword

void s t a r t k e r n e l ( s t a r t i n f o t ∗ s t a r t i n f o )
{
// Map the s h a r e d i n f o page
HYPERVISOR update va mapping ( ( u l o n g ) &s h a r e d i n f o ,

p t e ( s t a r t i n f o −>s h a r e d i n f o | 3 ) ,
UVMF INVLPG ) ;

i n i t e v e n t s ( ) ;

// I n i t i a l i s e t he c o n s o l e
c o n s o l e i n i t ( s t a r t i n f o ) ;
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Kernel startup code

start kernel (cont’d)

// Wri te a message to check t h a t i t worked
c o n s o l e w r i t e ( ” H e l l o w o r l d !\ n\ r ” ) ;
c o n s o l e w r i t e ( ”Xen magic s t r i n g : ” ) ;
c o n s o l e w r i t e ( s t a r t i n f o −>magic ) ;
c o n s o l e w r i t e ( ”\n\ r ” ) ;

// Set up t he XenStore d r i v e r
x e n s t o r e i n i t ( s t a r t i n f o ) ;
// Test t he s t o r e
x e n s t o r e t e s t ( ) ;
// F l u s h th e c o n s o l e b u f f e r
c o n s o l e f l u s h ( ) ;
// E x i t , s i n c e we don ’ t know how to do a n y t h i n g e l s e
}
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Notes

stack is 8K, storage used in main and set up in the assembly
language bootstrap

updates to virtual address mapping are done by hypervisor
calls to ensure that VM’s access only their own pages.

the upper 20 bits of the page table entry (pte) are used for
the mapping (substituting page number for frame number).

the lower 12 bits of the pte are used for flags

The flags set must be 3, the low order bit to indicate that the
page is present and the next bit to enable read and write
privileges.

UVMF INVPG ensures the TLB is updated
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Assembly language (bootstrap)

// l o a d e r f i l e i n f o r m a t i o n f o r Xen
s e c t i o n x e n g u e s t

. a s c i i ”GUEST OS=Nano−OS”

. a s c i i ” ,XEN VER=xen−3. 0 ”

. a s c i i ” , VIRT BASE=0x0 ”

. a s c i i ” ,ELF PADDR OFFSET=0x0 ”

. a s c i i ” ,HYPERCALL PAGE=0x2 ”

. a s c i i ” ,PAE=y e s ”

. a s c i i ” ,LOADER=g e n e r i c ”

. b y t e 0
. t e x t

// d e c l a r e th e g l o b a l s i n t h i s f i l e
. g l o b l s t a r t , s h a r e d i n f o , h y p e r c a l l p a g e
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Assembly language (bootstrap cont’d)

// I n i t i a l e n t r y p o i n t
s t a r t :
c ld // C l e a r d i r e c t i o n f l a g
l s s s t a c k s t a r t , %esp // Load th e s t a c k segment
push %e s i // Setup s t a r t i n f o f o r s t a r t k e r n e l
c a l l s t a r t k e r n e l // Jump i n to th e k e r n e l

// I n i t i a l s t a c k s p a c e . l s s ( above ) l o a d s i n i t i a l s t a c k
// + th e s t a c k segment s e l e c t o r (48 b i t s i n a l l )
// s t a c k segment s e l e c t o r i s 13+1+2 b i t s f o r
// segment s e l e c t o r number + t a b l e + r e q u e s t p r i v . l e v e l
s t a c k s t a r t :

. l o n g s t a c k +8192 , FLAT KERNEL SS
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Kernel startup code

Assembly language (bootstrap cont’d)

// U n p l e a s a n t −− t he PTE t h a t maps t h i s page i s
// a c t u a l l y o v e r w r i t t e n to map t he r e a l shared− i n f o page !
. o r g 0 x1000

s h a r e d i n f o :

. o r g 0 x2000
h y p e r c a l l p a g e :

. o r g 0 x3000
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Bootstrap assembly language notes

start called by Xen and specified in loader script as entry
point

Assembly program is in the first 3 pages of memory

First 4 lines set up stack (memory for stack is in the C routine)

It pushes the start info address on the stack ( start kernel ’s
parameter) and the calls start kernel

start stack describes the 48 bits of stack address and
segment descriptor needed to specify stack address

shared info is a name declared at virtual address 0x1000.
This must be mapped into nanoOS.

hypercall page defined and mapped in at virtual address
0x2000

C code begins at address 0x3000
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Part X

Time
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Time

Time

Two types of clocks, a cycle counter and a wall clock time

Xen provides these to the OS via shared info

Problem: at nano-second granularity, a CPU would need to be
dedicated to updating the wall clock time

Instead, the Time Stamp Counter (TSC) is a hardware counter
which can be read when necessary, converted to nano-seconds,
and then used to produce a fine-grained wall clock.

To do this, compute deltaTsc which is the current TSC less
the TSC at the time the wall clock time was last updated

Then scale it

Then add it to the wall clock time
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Time

Uses of time

Alarms need to be set to ensure finite progress

Application programs often need time

Time of day is often used to schedule periodic tasks (e.g.,
cron)

Files are marked with the time created

Time is needed to schedule time between processes

One of the big difference between VMs and bare hardware is
time

On VMs, time is not cycles
So OSs for VMs track virtual time, time which elapses only
when the VM is running.
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Time

Need to bind the timer virtual IRQ

Can then set a timer

HYPERVISOR set timer op ( u i n t 6 4 t i m e o u t )

using the number of nanosecond from system (domain) boot
to determine when the timer goes off.

need to have a gettimeofday() routine to determine the
current time

Time of day is relative to an epoch, Jan, 1, 1970 which is
UNIX’s birthday.

So different uses of time are off different bases
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Oddities

shared info pages are mapped into both Xen and the domain

hence, it may be updated concurrently when read

so a spin lock is built

in Xen, updates are signalled using version number

v e r s i o n ++; // make v e r s i o n odd
update v a l u e s
v e r s i o n ++; // make v e r s i o n even

Need to ensure that value not being updated when read and

Version has not changed after going even until values read
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gettimeofday

i n l i n e u i n t 6 4
NANOSECONDS( u i n t 6 4 t s c )
{

s t r u c t v c p u t i m e i n f o ∗ t ime
= &( s h a r e d i n f o . c p u i n f o [ 0 ] . t ime ) ;

u i n t 6 4 s c a l e d T s c = t s c << t ime−> t s c s h i f t ;
return s c a l e d T s c ∗ t ime−>t s c t o s y s t e m m u l
}

i n l i n e b o o l
isOdd ( u i n t 3 2 v )
{

return v & 1 ;
}

#def ine RDTSC( x ) asm v o l a t i l e ( ”RDTSC” : ”=A” ( t s c ) )
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Time

gettimeofday (start of procedure)

// removed unused t imezone i n the book ’ s v e r s i o n
i n t g e t t i m e o f d a y ( s t r u c t t i m e v a l ∗ tp )
{

u i n t 6 4 t t s c , o l d t s c , s y s t e m t i m e ;
// Get th e t ime v a l u e s from t he s h a r e d i n f o page
u i n t 3 2 t v e r s i o n , w c v e r s i o n ;
u i n t 3 2 t seconds , nanoseconds ;
s t r u c t v c p u t i m e i n f o ∗ t ime

= &( s h a r e d i n f o . c p u i n f o [ 0 ] . t ime ) ;
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gettimeofday (reading shared info)

do // Loop u n t i l s h a r e d i n f o v a l u e s can be r e a d
{

do // Sp in i f t he t ime v a l u e i s b e i n g updated
{

w c v e r s i o n = s h a r e d i n f o . w c v e r s i o n ;
v e r s i o n = time−>v e r s i o n ;

} whi le ( isOdd ( v e r s i o n ) | | i sOdd ( w c v e r s i o n ) ) ;
// Read t he v a l u e s
s e c o n d s = s h a r e d i n f o . w c s e c ;
nanoseconds = s h a r e d i n f o . wc nsec ;
s y s t e m t i m e = time−>s y s t e m t i m e ;
o l d t s c = time−>t s c t i m e s t a m p ;

} whi le ( v e r s i o n != time−>v e r s i o n
| |

w c v e r s i o n != s h a r e d i n f o . w c v e r s i o n
) ;
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gettimeofday (updating wc time based on TSC)

RDTSC( t s c ) ; // Get c u r r e n t TSC v a l u e
u i n t 6 4 d e l t a T s c = t s c−o l d t s c ; // c y c l e s s i n c e wc updated
// Update th e system t ime
u i n t 6 4 s i n c e U p d a t e = NANOSECONDS( d e l t a T s c ) ;
s y s t e m t i m e += s i n c e U p d a t e
// Move complete s e c o n d s to t he second c o u n t e r
s i n c e U p d a t e += nanoseconds ;
s e c o n d s += s i n c e U p d a t e / 1000000000;
nanoseconds = s i n c e U p d a t e % 1000000000;
// Return second & m i c r o s e c o n d v a l u e s ( Book Bug ?)
tp−>t v s e c = s e c o n d s ;
tp−>t v u s e c = nanoseconds / 1 0 0 0 ;

return 0 ;
}

Jon A. Solworth Secure OS Design and Implementation Xen

Time

Time summary

Time is an important service

Elapse time for scheduling

Elapse time is called system time

Time of day is important for dealing with external entities

For example, humans or other systems

CPU power management complicates time calculations

And other issues effect time scaling as well

In addition to this, ntp (network time protocol) is used to
keep clocks accurate.
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Part XI

Console
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Console

Console

A console pseudo device is implemented using events and
shared memory

The machine address for the shared memory page and event
for the console is passed in start info

Must map the page into virtual memory

Use events to send notification to Dom0 of NanoOS console
output

Use events to receive notification from Dom0 of NanoOS
console input
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Console

A console is the simplest device

It uses a 2048-byte output buffer

It also uses a 1024-byte input buffer

These buffers of circular producer-consumer buffers

A few variables in cons , in prod , out cons, out prod

and signals when data is waiting in the output buffer.

This same style is used in the XenStore, the block driver, and
the network driver

Goal: get console working as early as possible in the design of
an OS so you can have better visibility into the execution
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Xen console interface

s t r u c t x e n c o n s i n t e r f a c e {
char i n [ 1 0 2 4 ] ;
char out [ 2 0 4 8 ] ;
XENCONS RING IDX i n c o n s , i n p r o d ;
XENCONS RING IDX o u t c o n s , o u t p r o d ;

}

This data structure must be first mapped into a page shared
by DomU and Dom0

There is an event channel allocated for the console at system
start
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Console

XENCONS RING IDX

the XENCONS RING IDX is an unsigned int

the prod side is only incremented by the sender

the cons side is only incremented by the receiver

the number of bytes in the buffer are prod − cons

of course this is limited to the size of the buffer

to find the index i in the buffer b,
i = MASK XENCONS IDX(prod, b)

which will be between 0 . . . sizeof (b)− 1

Note because the buffer is circular, cannot use memcpy
(which assumes a linear buffer)
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Free running counters

Xen’s ring buffer use free running counters

After putting in 232 bytes counter will wrap around

That is, the XENCONS RING IDX value after 232 − 1 is 0

Nevertheless, prod − cons always gives the number of bytes in
the buffer

Even if, say prod = 1 and cons = 232 − 5

Note, this depends on using 2’s complement arithmetic

See book for more details
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Mapping Xen console

x86 page size is 4096 bytes, thus an address which points to
start of page has low-order 12 bits equal to zero

Rather than a machine address, Xen provides a machine frame
number (mfn), which truncates the low-order 12-bits

First map mfn to a pseudo-physical frame number (pfn)

Second, compute the pseudo-physical address p = pfn << 12

Third, from physical address p create virtual address p+& text

(Xen maps physical addresses to virtual address in order)

text is the first virtual address of the kernel
(it is given in the loader script)

Jon A. Solworth Secure OS Design and Implementation Xen

Console

Mapping the Xen console

i n t c o n s o l e i n i t ( s t a r t i n f o t ∗ s t a r t )
{

c o n s o l e = ( s t r u c t x e n c o n s i n t e r f a c e ∗)
( ( m a c h i n e t o p h y s m a p p i n g [

s t a r t−>c o n s o l e . domU . mfn ] << 12)
+

( ( u l o n g )& t e x t ) ) ;
c o n s o l e e v t = s t a r t−>c o n s o l e . domU . e v t c h n ;
/∗ TODO: Set up t he e v e n t c h a n n e l ∗/
return 0 ;

}
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Console write

// w r i t e n u l l t e r m i n a t e d s t r i n g
i n t c o n s o l e w r i t e ( char ∗ message ) {

s t r u c t e v t c h n s e n d e v e n t ;
e v e n t . p o r t = c o n s o l e e v t ;
i n t l e n g t h = 0 ;
whi le (∗message != ’ \0 ’ )
{

// 1 . w a i t u n t i l s p a c e f o r a c h a r i s a v a i l a b l e
// 2 . w r i t e th e n e x t c h a r

}
HYPERVISOR event channel op (EVTCHNOP send ,

&e v e n t ) ;
return l e n g t h ;
}
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Console write (wait for space)

// 1 . w a i t u n t i l s p a c e i s a v a i l a b l e
// back end consumes b y t e s i n t he b u f f e r
XENCONS RING IDX data ; // r i n g i n d e x
do {

data = c o n s o l e−>o u t p r o d − c o n s o l e−>o u t c o n s ;
HYPERVISOR event channel op (EVTCHNOP send ,

&e v e n t ) ;
mb ( ) ;
} whi le ( data >= s i z e o f ( c o n s o l e−>out ) ) ;
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Console write (write the data)

// w r i t e t he n e x t c h a r
i n t r i n g i n d e x = MASK XENCONS IDX(

c o n s o l e−>out prod ,
c o n s o l e−>out ) ;

c o n s o l e−>out [ r i n g i n d e x ] = ∗message ;
// Ensure t h a t t he data i s v i s i b l e to
// o t h e r p r o c e s s o r s b e f o r e c o n t i n u i n g
wmb ( ) ;
// I n c r e m e n t i n p u t and output p o i n t e r s
c o n s o l e−>o u t p r o d ++;
l e n g t h ++;
message++;
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Console read

To read the console you’ll need an event handler for the
console event

The handler is invoked when there is either

waiting input or
when bytes are remove by the consumer

The handler thus can

read the input
write more output

We don’t want the kernel to ever block unless there is nothing
to do
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Part XII

Virtual Memory
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Virtual Memory

Virtual Memory

Page tables map virtual memory addresses to physical
memory addresses

Virtual memory addresses can be distributed through the
virtual address space

For example, their may be a gap between stack and heap to
allow for growth of the stack

But physical addresses are consecutive, with no gaps

An OS may depend on this property

When it builds its page tables, which map virtual addresses to
physical addresses
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Xen Virtual Memory

In Xen, physical addresses are allocated to Xen and to the
various Doms

Because of dynamic usage patterns and fragmentation the
underlying addresses allocated to an OS may not be
contiguous

Xen’s solution

machine addresses correspond to the hardware physical
address

physical addresses are contiguous for a domain
virtual addresses are allocated with holes

Mappings change only the frame number (the high order 20
bits), not the address within a page (low order 12 bits)

Thus, often concerned with mfn, pfn,
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Kernel layout in Xen

Used by kernel

date structures

Filled by Xen

Kernel

Jon A. Solworth Secure OS Design and Implementation Xen



Virtual Memory

Process layout in Xen

Ethos

Text

Stack

HeapUser Space

Kernel
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pfn to mfn

As part of the shared info pages, Xen provides

max pfn: the maximum page frame number
pfn to mfn frame list

Xen starts DomUs in virtual real mode, meaning that it sets
up the initial page table for the OS

The mapping of parts of the OS to the memory is controlled
by the (OS specific) loader script

The OS must then load in the Xen specific components (grant
pages, start info , shared info)

An OS uses only a single page table until it creates its first
processes.
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Start of day memory layout

1 The domain is started within contiguous virtual-memory
region.

2 The contiguous region ends on an aligned 4MB boundary (in
Mini-OS it ends at 4MB).

3 Bootstrap elements are packed together, but each is
4kB-aligned.

4 The list of page frames forms a contiguous ’pseudo-physical’
memory layout for the domain. In particular, the bootstrap
virtual-memory region is a 1:1 mapping to the first section of
the pseudo-physical map.

5 All bootstrap elements are mapped read-writable for the guest
OS. The only exception is the bootstrap page table, which is
mapped read-only.

6 There is guaranteed to be at least 512kB padding after the
final bootstrap element. If necessary, the bootstrap virtual
region is extended by an extra 4MB to ensure this.
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Order of bootstrap elements

1 relocated kernel image

2 initial ram disk [mod start, mod len]

3 (The initial ram disk may be omitted.)

4 list of allocated page frames [ mfn list , nr pages]

5 start info t structure [register ESI (x86)]

6 bootstrap page tables [pt base, CR3 (x86)]

7 bootstrap stack [register ESP (x86)]
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Part XIII

Grant Tables
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Grant Tables

Grant tables

Events are good for providing a notification, but not for
passing lots of data

To pass information, Xen uses shared memory

These pages can be shared between domains or

Between a domain and Xen

(Xen controls all page tables, so it can enable this sharing)

The Xen mechanism for this is called grant tables

Grant tables can be used to transfer pages between domains,

but this requires large transfers (many pages) to be efficient.

Grant tables can be used to share pages between domains
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Use of Grant Tables

One or more shared pages are allocated to communicating for
each device

DomU treats this collection of shared pages as a ring buffer
(a producer-consumer structure).

Information is put in/taken out of the ring in FIFO order

Events inform DomU when there is data waiting

There are three fundamental devices for Xen

device buffer contents
Console printable text
Disk disk blocks
Network ethernet frames
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Grant entry structure

// Xen−3.2 , a v a i l a b l e f o r backward c o m p a t i b i l i t y
s t r u c t g r a n t e n t r y t {

// G T F p e r m i t a c c e s s :
// Frame t h a t @domid i s a l l o w e d
// to map and a c c e s s . [ GST ]
// G T F a c c e p t t r a n s f e r :
// Frame whose o w n e r s h i p
// t r a n s f e r r e d by @domid . [XEN]
u i n t 1 6 t f l a g s ;

domid t domid ; // domain to s h a r e w i t h

u i n t 3 2 frame ; // machine frame number
} ;

Jon A. Solworth Secure OS Design and Implementation Xen



Grant Tables

Informing Xen of shared paged

g n t t a b s e t u p t a b l e t s e tup ;
mfn t f rames [NR GRANT FRAMES ] ;

s e tup . dom = DOMID SELF ;
s e tup . n r f r ame s = NR GRANT FRAMES ;
// get f rame l i s t from Xen
// ( d e f i n e d i n xen/ i n c l u d e / p u b l i c / arch−x86/ xen . h )
s e t x e n g u e s t h a n d l e ( s e tup . f r am e l i s t , f r ames ) ;

HYPERVISOR grant table op ( GNTTABOP setup table , &setup , 1 ) ;
// map i n t o page t a b l e
g n t t a b t a b l e = map frames ( f rames , NR GRANT FRAMES ) ;
p r i n t k ( ” g n t t a b t a b l e mapped at %p .\ n” , g n t t a b t a b l e ) ;
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Granting a shared paged

// a f t e r g r an t t a b l e made v i s i b l e to Xen ,
// g ran t pages can be sha r ed
g r a n t r e f t
g n t t a b g r a n t a c c e s s ( domid t domid , u long frame , i n t r e a don l y )
{

g r a n t r e f t r e f = g e t f r e e e n t r y ( ) ;
g n t t a b t a b l e [ r e f ] . f rame = frame ;
g n t t a b t a b l e [ r e f ] . domid = domid ;
wmb( ) ;
r e a don l y ∗= GTF readonly ;
g n t t a b t a b l e [ r e f ] . f l a g s = GTF permi t acce s s | r e a don l y ;

r e t u r n r e f ;
}
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XenStore

Systems need a way to “discover” new things

In user space, this is accomplished by file system or by
network services

For example, some information can be put in a certain
directory by the “advertiser”

And the directory can be periodically read by a process
interested in such services

In Xen, the equivalent is the XenStore

XenStore is a hierarchically structured file system, it stores
name,value pairs

XenBus is the means of communicating with the XenStore
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XenStore semantics

Read a Key

Write a Key

Notify when a Key changes

Iterator through a directory

It supports transactions (and thus atomic operations)

The XenStore is also accesible from user space, so that Dom0
tools can be used to manipulate them
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XenStore layout

Domain specific information is stored by UUID, a “universally
unique ID”

UUID are essentially long random numbers, and hence the
chance of a conflict (two domains using the same UUID) is
essentially nil

/vm/uuid stores configuration information about the domain
with universal uuid

/local/domain/uuid

see http:

//wiki.xensource.com/xenwiki/XenStoreReference
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XenStore commands

XS READ , // r e a d a key
XS WATCH, // watch f o r changes to key−v a l u e
XS UNWATCH, // unwatch a p r e v i o u s l y watched key

// m u l t i−message t r a n s a c t i o n
XS TRANSACTION START , // s t a r t t he t r a n s a c t i o n
XS TRANSACTION END , // end t he t r a n s a c t i o n
XS WRITE , // w r i t e a key
XS WATCH EVENT, // r e s p o n s e to a watch
XS ERROR , // an e r r o r
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XenStore requests/responses

s t r u c t xsd sockmsg {
u i n t 3 2 t t y p e ; // XS ???
u i n t 3 2 t r e q i d ; // Request ID ,

// echoed i n daemon ’ s r e s p o n s e .
u i n t 3 2 t t x i d ; // T r a n s a c t i o n i d

// (0 i f not i n a t r a n s a c t i o n ) .
u i n t 3 2 t l e n ; // Length o f data f o l l o w i n g t h i s .
} ;

The xsd sockmsg is followed by zero or more null terminated
strings

The xsd sockmsg plus following strings must fit within the
1024 byte buffer

Errors are returned as strings, using type XS ERROR
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XenStore buffers

s t r u c t x e n s t o r e d o m a i n i n t e r f a c e {
char r e q [ XENSTORE RING SIZE ] ; // XenStore r e q u e s t s
char r s p [ XENSTORE RING SIZE ] ; // XenStore r e p l i e s
XENSTORE RING IDX r e q c o n s , r e q p r o d ;
XENSTORE RING IDX r s p c o n s , r s p p r o d ;
} ;

Two 1K buffers

One each for requests, responses to the XenStore

The normal producer/consumer indexes
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Initializing the XenStore

i n t x e n s t o r e i n i t ( s t a r t i n f o t ∗ s t a r t )
{

u l o n g pfn = m a c h i n e t o p h y s m a p p i n g [
s t a r t−>s t o r e m f n ] ;

x e n s t o r e = ( s t r u c t x e n s t o r e d o m a i n i n t e r f a c e ∗)
( ( p fn << 12) + ( ( u l o n g )& t e x t ) ) ;

x e n s t o r e e v t = s t a r t−>s t o r e e v t c h n ;
// TODO: Set up the e v e n t c h a n n e l

return 0 ;
}
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XenStore write

s t a t i c u i n t r e q i d = 0 ; // i n c r e m e n t e d f o r each r e q u e s t

i n t x e n s t o r e w r i t e ( char ∗ key , char ∗ v a l u e )
{

i n t k e y l e n g t h = s t r l e n ( key ) + 1 ;
i n t v a l u e l e n g t h = s t r l e n ( v a l u e ) + 1 ;
s t r u c t xsd sockmsg msg = {

. t y p e = XS WRITE ,

. r e q i d = r e q i d ,

. t x i d = 0 ,

. l e n = k e y l e n g t h + v a l u e l e n g t h } ;
// Wri te t he message
x e n s t o r e w r i t e r e q u e s t ( ( char∗)&msg , s i z e o f ( msg ) ) ;
x e n s t o r e w r i t e r e q u e s t ( key , k e y l e n g t h ) ;
x e n s t o r e w r i t e r e q u e s t ( v a l u e , v a l u e l e n g t h ) ;
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XenStore write

// N o t i f y th e back end
NOTIFY ( ) ;

// r e a l l y s h o u l d do more e r r o r p r o c e s s i n g
x e n s t o r e r e a d r e s p o n s e ( ( char∗)&msg , s i z e o f ( msg ) ) ;
IGNORE( msg . l e n ) ;
i f ( msg . r e q i d != r e q i d ++)
{

return −1;
}
return 0 ;

}
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Write the request

i n t x e n s t o r e w r i t e r e q u e s t ( char ∗message , i n t l e n g t h )
{

// Check t h a t t he message w i l l f i t
i f ( l e n g t h > XENSTORE RING SIZE ) { return −1; }

XENSTORE RING IDX i ; // F i x e d bug i n o r i g i n a l code

// w r i t e b y t e s to r i n g b u f f e r ( s e e n e x t s l i d e )

// Data i s w r i t t e n to th e r i n g , make i t v i s i b l e
wmb ( ) ;
x e n s t o r e−>r e q p r o d = i ; // now t e l l Dom0 about i t
return 0 ;
}
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Write request inner loop

f o r ( i=x e n s t o r e−>r e q p r o d ; l e n g t h > 0 ; i ++, l e n g t h−−)
{

// Wait f o r the back end to c l e a r enough s p a c e i n th e b u f f e r
XENSTORE RING IDX data ;
do
{

data = i − x e n s t o r e−>r e q c o n s ;
mb ( ) ;

} whi le ( data >= s i z e o f ( x e n s t o r e−>r e q ) ) ;
// Copy t he b y t e
i n t r i n g i n d e x = MASK XENSTORE IDX( i ) ;
x e n s t o r e−>r e q [ r i n g i n d e x ] = ∗message ;
message++;

}
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Some macros

#def ine NOTIFY ( ) \
do\
{\

s t r u c t e v t c h n s e n d e v e n t ;\
e v e n t . p o r t = x e n s t o r e e v t ;\
HYPERVISOR event channel op (\

EVTCHNOP send , &e v e n t ) ; \
} whi le ( 0 )

#def ine IGNORE( n ) \
do\
{\

char b u f f e r [ XENSTORE RING SIZE ] ; \
x e n s t o r e r e a d r e s p o n s e ( b u f f e r , n ) ; \

} whi le ( 0 )
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Device drivers

Split drivers

Xen doesn’t contain device drivers

Instead it relies on those in Dom0

Hence Dom0 has privileges to access device drivers
(DomU’s don’t)

In fact, most code in Dom0 is device driver code

Xen exports a number of pseudo-devices, including a console,
disk, network.

Xen’s device interfaces are not like other VMs device drivers

Which typically export qemu simulated devices

In either event, the exported devices are independent of the
underlying physical devices
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Front end/back end

Xen’s devices are exported as ring buffers implemented in
shared memory

they are paired with events for signaling data availability

A DomU implements the front-end device which

Puts the data in the shared memory buffer
And then uses a Xen event to signal that there is data available

A Dom0 implements the back-end device which on output

Has a handler associated with the front-end device
When it receives an event, it remove the data from the ring
buffer
And schedules it to be written out
Using Dom0 device drivers for that device

On input the direction is from Dom0 to DomU
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Concurrency

Concurrency issues

Concurrency issues are minimized in nanoOS because only one
processor is executing in the OS at a time.

But concurrency is inherent in OSs

The primary issues we need to deal with are

Interrupts/Events can occur when other operations are
occurring.
Memory semantics, in which ordering of memory operations is
not consistent across cores.
Waits on shared structures for external events.
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Concurrency issues

Interrupts Minimize upper half processing. Disable interrupts
when doing the lower half processing.

Memory use barrier to ensure that memory operations are
ordered relative to each other when using shared
memory.

Waits latch object and queue if object is already busy. Must
ensure deadlock is avoided.

Atomic compare and exchange.
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Split driver model

Xen uses a split driver model in which I/O is performed in two
steps

DomU requests I/O from Dom0
Dom0 performs the physical I/O using Linux’s device drivers

The DomU code is called the front end driver

The Dom0 code is called the back end driver

communicates with the back end
contains the device drivers for the physical devices

This leverages the enormous codebase of device drivers in
Linux

And simplifies DomU device handling and Xen code
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Rings

Front end communicates with the back end using rings

It does this via ring indices which are uints

each index is initialized to zero and incremented only by one
side

Requests are generated by one side and responses by the other

The disk drive is implemented with one ring, since all disk
operations are in response to DomU requests.
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Device driver rings

Requ
0 DomU puts on request 0

Requ
0 Requ

1 DomU puts on request 1

Res00 Requ
1 Dom0 responds to request 0

Requ
1 DomU removes response 0

Res01 Dom0 responds to request 1

DomU removes response 1
There are three indices in this scheme, all initially 0

start incremented by DomU when response is removed.

tail points one after the last request enqueued. Incremented
by DomU.

response is between start and tail and is the last response added.
Incremented by Dom0.
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A Disk driver

The ring buffer is just for disk command

The data is transfered in separate grant pages

Data is transferred in 512 byte sectors,

The device might require 4K blocks

A disk op can ask for multiple segments to be read or written

Disk ops can be reordered by backend, and hence there is a
disk barrier
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Disk driver initialization

b l k i f s t r i n g t ∗ r i n g s h a r e d ;
b l k i f f r o n t r i n g t r i n g p r i v a t e ;

i n t i n i t d i s k ( void )
{

s h a r e d = new page ( ) ; // a l l o c a t e a page
SHARED RING INIT ( s h a r e d p a g e ) ;
FRONT RING INIT(& r i n g p r i v a t e ,

r i n g s h a r e d , PAGE SIZE ) ;
// g e t a v a i l a b l e g r a n t r e f
g r a n t e n t r y t ∗ r e f = g e t g r a n t r e f ( ) ;
r e f−>f rame = v i r t t o m f n ( s h a r e d ) ;
r e f−>domid = backend domain ;
wmb ( ) ;
r e f−> f l a g s = G T F p e r m i t a c c e s s ; // Book bug

}
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Block driver request

#d e f i n e BLKIF OP READ 0
#d e f i n e BLKIF OP WRITE 1
#d e f i n e BLKIF OP WRITE BARRIER 2
#d e f i n e BLKIF OP FLUSH DISKCACHE 3

// s e c t o r s a r e 512 b y t e s .
// n o r m a l l y , f i r s t s e c t =0 and l a s t s e c t =7
s t r u c t b l k i f r e q u e s t s e g m e n t {

g r a n t r e f t g r e f ; // r e f e r e n c e to I /O b u f f e r f rame
// f i r s t s e c t : f i r s t s e c t o r i n frame to t r a n s f e r
// l a s t s e c t : l a s t s e c t o r i n frame to t r a n s f e r
u i n t 8 t f i r s t s e c t , l a s t s e c t ;
} ;
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Block driver request

s t r u c t b l k i f r e q u e s t {
u i n t 8 t o p e r a t i o n ; // BLKIF OP ???
u i n t 8 t n r s e g m e n t s ; // number o f segments
u i n t 6 4 t i d ; // p r i v a t e g u e s t v a l u e , echoed i n r e s p
b l k i f v d e v t h a n d l e ; // o n l y f o r r e a d / w r i t e r e q u e s t s
b l k i f s e c t o r t s e c t o r n u m b e r ; // s t a r t s e c t o r i d x on d i s k ( r /w o n l y )
s t r u c t b l k i f r e q u e s t s e g m e n t

seg [ BLKIF MAX SEGMENTS PER REQUEST ] ;
} ;
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Reading a block

char ∗page = new page ( ) ; // Book Bug
g r a n t t a b l e e n t r y t ∗ r e f = g e t g r a n t r e f ( ) ;
r e f−>f rame = v i r t t o m f n ( page ) ;
r e f−>domid = backend domain ;
wmb ( ) ;
r e f−> f l a g s = G T F p e r m i t a c c e s s ;

i n t r e a d B l o c k ( g r a n t t a b l e e n t r y t ∗ r e f ,
b l k i f s e c t o r t s e c t o r , // d i s k s e c t o r a d d r e s s
u i n t 6 4 r e q u e s t I d , // echoed back on r e s p o n s e
u i n t s h o u l d N o t i f y ) ; // send e v e n t to do t he r e a d ?
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readBlock

b l k i f r e q u e s t t ∗ r e q u e s t =
RING GET REQUEST( p r i v a t e , p r i v a t e−>r e q p r o d ++);

r e q u e s t−>o p e r a t i o n = BLKIF OP READ ;
r e q u e s t−>h a n d l e = b l o c k v d e v ;
r e q u e s t−>s e c t o r n u m b e r = s e c t o r ; // on d i s k
r e q u e s t−>i d = r e q u e s t I d ;
r e q u e s t−>n r s e g m e n t s = 1 ;
r e q u e s t−>seg [ 0 ] . g r e f = r e f − GRANT TABLE ;
r e q u e s t−>seg [ 0 ] . f i r s t s e c t = 0 ;
r e q u e s t−>seg [ 0 ] . l a s t s e c t = 7 ;
RING PUSH REQUESTS AND CHECK NOTIFY(

p r i v a t e , s h o u l d N o t i f y ) ;
i f ( s h o u l d N o t i f y ) {

s t r u c t e v t c h n s e n d e v e n t ;
e v e n t . p o r t = b l o c k p o r t ;
HYPERVISOR event channel op (EVTCHNOP send , &e v e n t ) ;
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Response from read

s t r u c t b l k i f r e s p o n s e {
u i n t 6 4 t i d ; // c o p i e d from r e q u e s t
u i n t 8 t o p e r a t i o n ; // c o p i e d from r e q u e s t
i n t 1 6 t s t a t u s ; // BLKIF RSP ???

} ;

// i i s th e i n d e x i n t o t he r i n g b u f f e r
b l k i f r e s p o n s e t ∗ r e s p o n s e =

RING GET RESPONSE( p r i v a t e r i n g , i ) ;
i f ( r e s p o n s e−>i d == r e q u e s t I d )
{
}
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Completing back end initialization

The initialization given so far is for the front end

But still need to configure the back end

To do that, the back end needs

The machine address of the ring page
The event channel for the device

The front end needs to negotiate with the backend

And perhaps get some information from the backend

Such as device characteristics

All these are done using the XenBus

Jon A. Solworth Secure OS Design and Implementation Xen

Disk

XenBus calls

xenbus transaction start (&xbt) starts a transaction, reports
back with transaction ID

xenbus printf (xbt, dir , key, fmt, v) writes to the XenStore
in dir the key is given the value which is the result of
sprintf ( str , fmt, v)

xenbus switch state (xbt, path, XenbusStateConnected),
then the device is changed to the connected state. (It does
this by doing a XenStore write of the new state for the path)

xenbus transaction end (xbt, 0, &retry) ends the transaction
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XenBus setup

e r r = x e n b u s t r a n s a c t i o n s t a r t (& xbt ) ;

e r r = x e n b u s p r i n t f ( xbt , nodename , ” r i n g−r e f ” , ”%u” ,
dev−> r i n g r e f ) ;

e r r = x e n b u s p r i n t f ( xbt , nodename ,
” event−c h a n n e l ” , ”%u” , dev−>e v t c h n ) ;

e r r = x e n b u s p r i n t f ( xbt , nodename , ” p r o t o c o l ” ,
”%s ” , XEN IO PROTO ABI NATIVE ) ;

s n p r i n t f ( path , s i z e o f ( path ) , ”%s / s t a t e ” , nodename ) ;
e r r = x e n b u s s w i t c h s t a t e ( xbt , path ,

XenbusStateConnected ) ;

e r r = x e n b u s t r a n s a c t i o n e n d ( xbt , 0 , &r e t r y ) ;
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Networking
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Networking

A network interface is implemented with two rings, one for
arriving packets and one for outgoing packets

This is because packet do not always arrive in response to a
request

And even if they did, the latency is too large to hold up other
packets

The disk driver’s data was disk blocks

The network driver’s data is ethernet packets

And thus ethernet, IP headers, TCP or UDP headers need to
be added
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Networking
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Scheduling

Scheduling

In a bare metal OS, the OS can

Halt (stop running)
Can go into low power state
Can block waiting for an interrupt

On a multi-core processor, different processors can be
executing simultaneously in Dom0, DomU, and Xen.

On a uniprocessor, DomU should help by giving up the
processor if it needs to wait for Dom0 to do something

HYPERVISOR sched op ( SCHED OP yield , NULL ) ;
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Halting and Blocking

to shutdown

s c h e d s h u t d o w n o p t op ;
op . r e a s o n = SHUTDOWN power off ;
HYPERVISOR sched op ( SCHED OP shutdown , &op ) ;

give up processor until next event delivered

HYPERVISOR sched op ( SCHED OP block , &op ) ;
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Summary

A VM abstracts the hardware

All VMs abstract I/O devices on PCs because the variety of
I/O devices is so large that they are too large to implement

Xen’s paravirtualization abstraction also abstracts the
architecture

by starting up in real mode
and by requiring hypercalls instead of privileged instructions

Xen’s paravirtualization was designed to be very close to the
actual hardware

To minimize changes when porting to Xen

Since the time Xen was introduced, Intel and AMD have
provided virtualization extensions for their architecture

Enabling unmodified kernels to be run under Xen
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Summary

In addition, interrupts are supported for entering into the
kernel

Events are the abstraction of interrupts

They can be used for physical IRQs in privileged domains,
virtual IRQs, and interdomain communication.

These events can be associated with handlers which are
asynchronously called

But this requires synchronization to prevent race conditions

And it is best to minimize the amount of work done in the
upper handler

Jon A. Solworth Secure OS Design and Implementation Xen

Summary

Bringing the OS up

Xen boots with paging turned on

It initially communicates with the OS through start info and
shared info

Which provides handles necessary to set up XenBus and
console
And information about the virtual CPUs allocated to the OS
And event delivery from Xen to the OS
And time mechanisms for wallclock and scheduling

With this information the console and XenStore can be
brought up
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Bringing the OS up (cont’d)

The Grant Table needs to be established, providing pages
which can be shared between domains.

A time of day clock is created which get timer interrupts

Timers ensure that a process does not hog the CPU
(The kernel is coded in such a way that this is not a danger)

The XenStore is then brought up, allowing DomU to request
new services from Dom0
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Disk and Network Devices

Devices depend on front-end drivers in DomU communicating
with back-end Dom0 drivers

The front end

Creates a ring buffer using a GrantTable Page
An interdomain event port is created to signal when data is
put on or taken off the ring buffer.
This information is communicated with the backend via the
XenBus

The back end then configures the device

GrantTable pages are then used for sending data to/from the
back end
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