
Secure Operating System Design and
Implementation

Virtual Machines

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

January 27, 2012

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Virtual Machines Overview Overview

Part I

Virtual Machines Overview

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Virtual Machines Overview Overview

Overview

Definition

A Virtual Machine (VM) provides an abstract machine, that is, a
software-implemented computer.

Definition

A Virtual Machine Monitor (VMM) is the software which
implements a virtual machine.

We are interested in the case in which the abstract machine
coincides closely with a physical machine

In cases where they diverge significantly, the resulting virtual
machine is called an interpreter.

We are interested here in VMMs which can support OSs

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Virtual Machines Overview Overview

Non-interpreter VMs

Two basic levels at which non-interpreted VMs can work

Full Virtualization VM. The abstract machine architecture includes
the privileged and unprivileged instructions of
the underlying architecture.

Paravirtualization VM. The abstract machine architecture includes
the unprivileged instructions of the underlying
machine and privileged instructions must be
used through a separate interface.

Unchanged full virtualization paravirtualization
OS X
processes X X

Jon A. Solworth Secure OS Design and Implementation Virtual Machines



Virtual Machines Overview Overview

Full vs. Para virtualization

Full virtualization is best for existing OS, as no porting is
required.

This saves work (even if source is available)

May be necessary (if source is not available)

But some architectures (386) are not efficiently virtualizable

Paravirtualization requires porting

but may be faster

Even when the underlying architecture supports full
virtualization

We’ll next discuss architectural requirements for full
virtualization

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Virtual Machines Overview Overview

New Operating System Implementation Techniques

Hardware Implement directly on hardware
Best performance
Device drivers needed to support all hardware on
which OS runs
Need two computers, one for target and one for
development

Full virtualization fully replicate underlying computer
Limited number of devices, big savings in
development dollars
One computer
better development

Paravirtualization replace privilege instruction with hypervisor
calls, use pseudo devices

Advantages of full virtualization
Higher performance
Security, though, depends on layering

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

A simple VM

Part II

A simple VM

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

A simple VM

A simple VM

Consider the simplest VM

Without any performance considerations

Build it as an interpreter

It executes each instruction one at a time

It completely simulates the processor architecture

No problem, privileged and unprivileged instructions the same

We can run as many OSs as we want

Jon A. Solworth Secure OS Design and Implementation Virtual Machines



A simple VM

Performance issues

Unfortunately, the simple VM is very slow

The danger comes from privileged instructions

We’d like to execute unprivileged instructions at full speed

But privileged instructions have to be handled carefully

The problem is that privileged instructions are mixed with
unprivileged instructions

To sort them out, we can use either hardware or software
techniques

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

A simple VM

Techniques to increase performance (Binary Rewrite)

Binary rewrite: rewrite the instruction stream into an
equivalent instruction stream without privileged instructions

Its expensive to do the rewrite, but once its done it can be
reused

Most flexible (does not require anything of environment)

x86 instruction stream difficult to analyze.

E.g., difficult to tell where instructions start

Therefore must be done at last minute (right before a branch
to the instruction)

Original technique for VMware

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

A simple VM

Increasing performance (paravirtualization)

Alternatively, manually separate

privileged instructions from
unprivileged instructions

And replace privileged functions with calls to trusted
procedures

Provides the ability to tune at the OS level

This is the technique used in Xen

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

A simple VM

Increasing performance (virtualizable architecture)

An architecture is virtualizable if it can trap the privileged
instructions

And then implement the privilege instruction in a VMM

This enables the OS to be run in user mode

The first architecture to support a VM was CP-40 (1967)

And was commercialized by CP-67 (1972)

Intel architecture was not originally not virtualizable

Architectural support was added by to PC

(Intel VT-X in 2005 and AMD-V in 2006)

Jon A. Solworth Secure OS Design and Implementation Virtual Machines



Popek and Goldberg requirements for full virtualization

Part III

Popek and Goldberg requirements for full

virtualization

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Popek and Goldberg requirements for full virtualization

Architectures and virtualization

Full virtualization requires the privileged instructions work.
Popek and Goldberg listed a set of sufficient requirements:

Equivalence A program running under the VMM should
behave essentially identical to direct execution on an
equivalent machine.

Resource control The VMM must be in complete control of
the virtualized resources.

Efficiency A statistically dominant fraction of machine
instructions must be executed without VMM intervention.

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Popek and Goldberg requirements for full virtualization

Popek and Goldberg sufficient requirements

Privileged instructions trap if the processor is in user mode
and do not trap if it is in supervisor mode.

Control sensitive instructions attempt to modify the
resource configuration in the system.

Behavior sensitive instructions have behavior or results
which depend on the configuration of resources (the content
of the relocation register or the processor’s mode).

Popek and Goldberg’s primary result is:

Theorem

For any conventional third-generation computer, a VMM may be
constructed if each sensitive instructions for that computer is a
privileged instructions.

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Bare metal vs. hosted VM

Part IV

Bare metal vs. hosted VM

Jon A. Solworth Secure OS Design and Implementation Virtual Machines



Bare metal vs. hosted VM

Paravirtualization and alternatives

there are two ways of structuring a virtual machine

Bare Metal (or Type 1) virtualization can run the VMM directly
on the underlying hardware (e.g., Xen)

Hosted (or Type 2) virtualization runs the VMM on top of an
existing OS (e.g., VMware workstation)

OS

VMM

hardware

OS

VMM

OS

hardware

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Bare metal vs. hosted VM

Comparison of bare metal vs. hosted VMs

Bare metal VMMs do not rely on the security of an underlying
OS (since there is no underlying OS)

OSs can be 500x more code than a bare metal VMM

Bare metal VMMs can support multiple OSs at one time

Hosted VMMs are easier to field, just like an application

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Bare metal vs. hosted VM

Hosted VMMs

Hosted VMMs run in user space, and thus care must be taken
with privileged instructions

To deal with privileged instructions

just-in-time compilation (binary rewriting)
virtualizable architecture

VMware uses both techniques

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Bare metal vs. hosted VM

Bare metal VMM

Xen is a bare metal hypervisor

The size of the hypervisor is minimized

Which means that it jettisons as much functionality as it can

It does this by locating device support an one of the OS’s,
called Dom0, which run on top of the hypervisor

Dom0 is a privileged OS as it has access to I/O devices

Ethos Dom0

VMM

hardware

Jon A. Solworth Secure OS Design and Implementation Virtual Machines



Bare metal vs. hosted VM

Hypervisor/Dom0 split

Hypervisor provides ensures memory isolation between OSs

Xen is paravirtualized, OS makes explicit Hypervisor Calls,
rather than implicitly trapping privileged instructions into the
Hypervisor.

Provides a pseudo-interrupt facility called Xen Events

Provides communication between DomUs (such as Ethos) and
Dom0

XenBus: for setting up name value pairs
RingBuffers: for building communication between OSs

Dom0 implements

An ethernet driver for DomU
A block device (disk driver) for DomU

a relatively low privileged DomU is like implementing part of
OS in process

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Implementing an OS on a VMM

Part V

Implementing an OS on a VMM

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Implementing an OS on a VMM

Effect of VMMs on OS and Applications

It may appear that VMMs, and in particular, fully virtualizing
VMMs would have little effect on OS

But that’s not the case

The largest impact is that multiple OSs can be run
concurrently on a computer

Which means that a new OS which supports only one
application is feasible since using the new OS does not
preclude using older OSs

It also means that application (e.g., browsers) do not need to
support multiple OSs

This simplifies applications

And removes the need for lowest denominator

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Implementing an OS on a VMM

Effect on OS design and Implementation

OSs can support higher level semantics

OSs needed not be universal (e.g., realtime, parallel
processing)

OSs need only support devices of the VM

A VM exports basically one device of each type
This eliminates the need to implement a large number of
devices drivers (device drivers typically constitute 2/3rds or
more of the OS code).
Device drivers constitute much more of the cost of an OS

OSs on a VMM are largely independent of the underlying
hardware

A new OS can use facilities from another OS on the same host

Jon A. Solworth Secure OS Design and Implementation Virtual Machines



Implementing an OS on a VMM

Security Impact

Bare metal VMMs are more secure than hosted VMMs, since
they don’t depend on an underlying OS

Devices on Bare metal VMM are managed by another OS,

Disk and Network devices can be sent encrypted data

Hence, Dom0 can only effect availability of Disk and Network

This solution does not work with I/O to humans, and so these
remain vulnerable to Dom0, unless the device hardware
encrypts

Longer term. the trend is towards specialized OSs will be spun
off to manage individual devices, for example a Video OS
which will run an Nvidia display.

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Implementing an OS on a VMM

Ethos

Ethos is built on top of Xen, a bare metal VMM

It uses (for now) Dom0’s filesystem to save implementation
time

It is specialized (does not support realtime, parallelism)

It uses Xen’s pseudo devices (for networking and console)

It will implement only authenticated and encrypted networking

It will implement strong authorization

Jon A. Solworth Secure OS Design and Implementation Virtual Machines

Implementing an OS on a VMM

Conclusions

Building an OS on top of a VMM reduces the number of
device drivers which need to be built, by far the largest cost of
a traditional OS implementation

It enables multiple OSs to be run simultaneous

It provides a better debugging environment

All development can be done on a single computer

Jon A. Solworth Secure OS Design and Implementation Virtual Machines


