
Secure Operating System Design and
Implementation

Userspace

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

March 30, 2015

Jon A. Solworth Secure OS Design and Implementation Userspace

Part I

Userspace overview

Jon A. Solworth Secure OS Design and Implementation Userspace

Userspace processes

In these slides we describe

How Ethos C code differs from Linux C code

How to compile userspace programs

The initial userspace library

The Ethos file system layout

Test code

We assume you know make, the Unix utility

Jon A. Solworth Secure OS Design and Implementation Userspace

Ethos tool chain

Xen the virtual machine monitor

subversion source control containing Ethos
/home/svn/projects/ethos/ethos the kernel
/home/svn/projects/ethos/ethosUserspace

userspace

gcc the gcc compiler suite

make build software

bugzilla report and track bugs

Jon A. Solworth Secure OS Design and Implementation Userspace

Overview

Ethos is designed and implemented to change userspace
programming

Making it simpler, more reliable, and more secure

And thus Ethos’s interfaces are incompatibility with existing
systems

Its incompatible syscalls result in incompatible libraries

Incompatible libraries result in incompatible programs

Whew, there is a lot to build here

Especially since libraries need improvement too

Jon A. Solworth Secure OS Design and Implementation Userspace

Primary goal for C-level libraries

We don’t believe in building substantial libraries in C

Because they are more prone to security holes than higher
level libraries

Our primary reason for doing so is to enable porting of
programming languages

And so we’re doing more library porting than we would like

Jon A. Solworth Secure OS Design and Implementation Userspace

Part II

Creating userspace code

Jon A. Solworth Secure OS Design and Implementation Userspace

Building a process

The program is written in some Programming Language (PL)

It is compiled into an object file (typically in ELF format)

The object file is linked to some libraries

static libraries ensure that the executable completely
contains the userspace code

dynamic libraries produces smaller executables and map
in libraries when the executable is loaded.

Each PL a standard library

Each PL implementation requires that its standard library be
implemented

(But it is possible to change the standard library, while
keeping the PL).

Jon A. Solworth Secure OS Design and Implementation Userspace

Standard libraries

Standard libraries include many OS syscalls and abstractions
based on traditional OS semantics

Higher level libraries are going to rely on the functionality of
standard libraries

Ethos’s goal is to build simpler libraries which are easier to use
and specialized to Ethos

The most basic Ethos library is estdlib, containing
procedure wrappers for syscalls

We’ll start to build on top of that

(later on a higher level programming language Python.)

Jon A. Solworth Secure OS Design and Implementation Userspace

Part III

Compiling userspace programs

Jon A. Solworth Secure OS Design and Implementation Userspace

Compilation

Ethos userspace programs, as with the Ethos kernel, is
compiled under Dom0.

Dom0 is Linux

Ethos compilation must avoid Linux libraries

To do this it needs a custom linking script

The linking script is /ethos/config/script.ld

The script only produces static binaries
(which don’t need run-time linking)

Jon A. Solworth Secure OS Design and Implementation Userspace

Compilation issues

Ethos applications are compiled under Linux (on Dom0)

When the command gcc -o test test.c is executed

The pre-processor (cpp) is run on test.c
The output of that is fed to the compiler (which includes the
compiler front end, optimizer, and assembler)
The result compilation is an object file test.o which is then
linked against the standard library (libc)

Procedures and variables in the library are linked against the
object file only if needed

This prevents name conflicts in applications with library
functions. (Name resolution occurs left to right with the
standard library at the right end)

And allows the application to substitute their own version in
preference to system functions

Jon A. Solworth Secure OS Design and Implementation Userspace

Compiling a C program for Ethos

first the gcc command

FLAGS = −Wall −fno−b u i l t i n \
−fno−l e a d i n g−u n d e r s c o r e \
−fno−s t a c k−p r o t e c t o r −DDEBUG −g2

INCLUDES = − I / e t h o s / i n c l u d e /\
− I / e t h o s / i n c l u d e / u s e r s p a c e

gcc $ (FLAGS) $ (INCLUDES) −c i n i t . c −o i n i t . o

The FLAGS specify all possible warnings, to not do certain
types of optimizations, not to allow leading underscores, to
provide some form of Address Space Layout Randomization,
to define DEBUG to the pre-processor, and to generate
debugging information in the .o file

The include includes the userspace specific include directory
and the shared kernel-userspace directory.

the gcc command runs the first stage of compilation and does
not do linking

Jon A. Solworth Secure OS Design and Implementation Userspace

remainder of compilation

Here is what you do after the gcc command

l d −T s c r i p t . l d −n o s t d l i b −o i n i t . e l f i n i t . o\
−L . / l i b − l e s t d l i b \
‘ gcc −p r i n t−l i b g c c− f i l e −name ‘

objdump −−s o u r c e i n i t . e l f > i n i t . e l f . l s t
nm i n i t . e l f > i n i t . e l f . a l l . sym
nm −g i n i t . e l f > i n i t . e l f . g l o b a l . sym

the ld line specifies the loader script (script.ld), to not
automatically add the standard library and the location of
libraries and the use of both the Ethos standard library
(estdlib) and the gcc library.

objdump displays the assembly code from the ELF file

nm extracts names from the ELF file.

Jon A. Solworth Secure OS Design and Implementation Userspace

Part IV

Ethos standard library

Jon A. Solworth Secure OS Design and Implementation Userspace

Ethos standard library

readVar Read a file

writeVar Write a file

readStream Read a stream

writeStream Write a stream

getDirectoryFd get the Fd for a directory

getDirectoryVector get a vector of Fd for a directory path vector

tsleep Sleep for specified number of nanoseconds

printf Print to stdout

fprintf Print to fd

Jon A. Solworth Secure OS Design and Implementation Userspace

Part V

Ethos userspace layout

Jon A. Solworth Secure OS Design and Implementation Userspace

Ethos userspace layout

This is the layout of Ethos is Dom0

/ethos/etc/domain config the Xen Ethos domain configuration

/ethos/config/ld.config the linker script

/ethos/boot/ethos.elf the kernel

/ethos/rootfs the root of the Ethos file system

/ethos/rootfs/init the first userspace process to execute

/ethos/rootfs/system/bin other system executables

/ethos/rootfs/program/bin other user invokable executables

/ethos/include include files

Jon A. Solworth Secure OS Design and Implementation Userspace

Creating userspace executables

create an init and put it in /ethos/rootfs

create some other executables which will be descendants of
init

These would typically go in /ethos/system/bin

We need a standard init

Which will start up programs according to a script

So that we need to only specify the start up script

(and create the necessary programs)

Jon A. Solworth Secure OS Design and Implementation Userspace

Part VI

Userspace testing

Jon A. Solworth Secure OS Design and Implementation Userspace

Testing

ethosUserspace/trunk/test

Each Makefile has the following targets clean, install, run,
check

first clean, install, and run all tests

then check all tests

Do this testing often (after every change)

Checked in programs should not have regressions

(Things get more complicated when projects get bigger, >
100K lines)

Jon A. Solworth Secure OS Design and Implementation Userspace

Git and Bugzilla use

Build. check in, and commit to git should be done as often as
possible

Each check in has a comment associated with it

Checkins also should be synchronized with bugzilla fixes

Jon A. Solworth Secure OS Design and Implementation Userspace

Conclusion

For most OS projects, which produce POSIX interfaces,
almost all the work is in building the Kernel

For non-POSIX interfaces, providing userspace code will be
significantly larger than building the Kernel

To do that we’ll have to build libraries

Port programming languages

And build applications

Jon A. Solworth Secure OS Design and Implementation Userspace

