
Secure Operating System Design and
Implementation

System Calls

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation System calls

Part I

System call overview

Jon A. Solworth Secure OS Design and Implementation System calls

Overview

An OS’s architecture is determined by its system call interface

A system call causes

the OS kernel to be entered
turns on the privilege bit and thus
enables privileged instructions to be executed

But this is just the mechanics ...

Jon A. Solworth Secure OS Design and Implementation System calls

Abstraction

The syscalls defines a set of abstractions

The abstractions that an OS provides are relatively high level

There is no requirement that they be universal, for example
that they can support any network protocol

And hence the OS has semantics

And that semantics impacts security

And programming

And other properties of the system

Jon A. Solworth Secure OS Design and Implementation System calls

Impact

In Ethos, our focus is on security

In particular, the security of applications

Which are not part of the OS

But which are influenced by the OS

So it is important to ask:

How is security affected by the OS?
And what can be done to improve security?

Jon A. Solworth Secure OS Design and Implementation System calls

Security

Highly trusted software has to be carefully designed and
analyzed (so that it does the right thing)

All software needs to be minimally authorized (so that the
harm it can do is minimize)

Authenticated (to know what to trust)

Isolate by default (authorize that which reduces isolation)

Prevent security holes

Definition

A security hole is a

1 Bug

2 Which can be triggered by an attacker

3 To violate the security specification of the system

Jon A. Solworth Secure OS Design and Implementation System calls

Eliminating security holes

Every security hole starts as a bug

Eliminating bugs eliminates security holes

We can try to find bugs and fix them

But better if we get rid of whole classes of bugs

Making it easier to reason about programs

And ultimately to lower complexity of programming

Definition

A pitfall is the semantics of an interface which can result in a
security hole.

How can we systematically eliminate pitfalls?

Jon A. Solworth Secure OS Design and Implementation System calls

Programming language pitfalls

Programming languages are a source of pitfalls which lead to
security holes. Programming languages should be:

Type safe: so that types are never violated (e.g., buffer
overflow)

Memory safe: so that the map of variables to memory is
consistently maintained.

Integer overflow safe: so that addition of two positive
numbers don’t result in a negative number

No explicit concurrency: threads enable race conditions and
many other problems.

Modular: minimize interaction the programmer needs to
consider

Exceptions: to ensure errors are not overlooked

Jon A. Solworth Secure OS Design and Implementation System calls

OS pitfalls

Race conditions: note that OS is inherently parallel as it deals
with the outside (parallel) world.

Well behaved (self-synchronizing) abstractions are desirable

Prevent weird interleavings: (e.g., pipe semantics)

Prevent confusing semantics: (e.g., symbolic links)

Prevent TOCTTOU (Time-of-check-to-time-of-use) errors
(provide atomic operations)

Monolithic semantics (resulting in over privileging and large
attack surface)

Loose authorization over-privileging processes

Lack of authentication

Semantics variants

Jon A. Solworth Secure OS Design and Implementation System calls

Clarity

Semantic variants leads to a number of problems:

Unclear semantics

To many different mechanisms for the same purpose

Needlessly complex mechanisms (e.g., the complexity to use
cryptography)

Simple error conditions

Simplify when error can occur

Avoid standards ambiguity (e.g., undefined parameter order
evaluation)

Jon A. Solworth Secure OS Design and Implementation System calls

Part II

Ethos system calls

Jon A. Solworth Secure OS Design and Implementation System calls

Ethos built-in security facilities

Very strong authorization
Information flow, executable, separation of duty, groups

Authentication
Built in mechanisms for network authentication (including
digital signature)

Cryptography
Implicitly managed (e.g., encrypted file system)

Service based
Configuration is service based, enabling system to point to
service information

Jon A. Solworth Secure OS Design and Implementation System calls

Ethos clarity

Simplified networking

Type-safe file system and communication

Concurrency is external to processes
no signals, threads, or shared memory

Simplified failure semantics
Fewer failures, less failures at inconvenient times

Transaction
No explicit locking which has availability and other issues

Jon A. Solworth Secure OS Design and Implementation System calls

Per process information

The user on whose behalf the process executes

The label of the executable

The file descriptors

Process group ID and parent process group ID

Terminate portal virtual process

Jon A. Solworth Secure OS Design and Implementation System calls

Events

Events are handles for asynchronous actions which complete later

All asynchronous syscalls return an event

A process can have (issued) multiple asynchronous syscalls

A process can block on one or more events, waiting for any or
all events to complete

When an event completes and is retired, it returns a status
and possibly a value

Events are identified by and EventId, a 64-bit quantity which
is guaranteed to never repeat.

Jon A. Solworth Secure OS Design and Implementation System calls

File descriptors

File Descriptors are for the following classes

files devices directories terminate

group sets IPC networking debug

There are 6 default descriptors:

stdin as in POSIX

stdout as in POSIX

stderr as in POSIX

rootDirectory the root directory and therefore cannot be
changed

currentDirectory the current directory

environmentDirectory the environment directory

Jon A. Solworth Secure OS Design and Implementation System calls

No signals

Signals are a hodgepodge of different things

They add in asynchrony (poorly) into a process

But they also add concurrency into the process

where it has no business being

We add in asynchrony via events

Concurrency happens between processes

Jon A. Solworth Secure OS Design and Implementation System calls

Virtual processes

A virtual process is a process per user, created on demand
from a fixed executable

It is created (if it does not already exist) by sending a file
descriptor to it

It solves the problem of authentication

Have a network connection to a virtual process

Have a login connection to a virtual process

No process ever changes the user with whom it is associated

Jon A. Solworth Secure OS Design and Implementation System calls

Portals

A portal is a handle to access some process functionality

It can be used to debug or to terminate a process

A portal is a file descriptor (and thus protected by
authorization)

Terminate portal can

Check ps-style statistics
Kill a process
Check whether a process exists
Get the process groups associated with a process

Debug protocol

Interfere with processes in controlled ways
this is the other essential capability of signals

Jon A. Solworth Secure OS Design and Implementation System calls

Process groups

Process groups are nested

So that each process group (except the leaf process) is
composed of lower level process groups.

Process groups are useful for sets of processes which are used
for a common task

Process groups are created by fork

Process groups are used by processes which contain terminate
portals

Jon A. Solworth Secure OS Design and Implementation System calls

Authorization

executable and user both are factors in determining
permissions

information flow to preserve confidentiality and to protect
integrity

group mechanism which

ensures relative structure between groups
controls how members are added and removed from groups

separation of duty and chinese wall

Jon A. Solworth Secure OS Design and Implementation System calls

Transactions

Transactions span multiple system calls

Ensure that actions are atomic

Simplify recovery

Simplify failure semantics

Jon A. Solworth Secure OS Design and Implementation System calls

Types

In Ethos, files, networking, and IPC are typed

Applications never need to deal with raw byte streams

Problem plagued conversions from raw bytes to type date are
done in applications

IPC/Networking use RPC

Jon A. Solworth Secure OS Design and Implementation System calls

Part III

Syscalls by category

Jon A. Solworth Secure OS Design and Implementation System calls

Categories

Process create and manage processes

Events manage events

Files read and write files

Directories the name space in which files exist

IPC/Networking a IPC and networking are unified

Terminate portal portal for abnormal termination of processes

Debug portal portal for debugging operations

Authentication authentication at the console

Transaction a syscall transaction mechanism

Jon A. Solworth Secure OS Design and Implementation System calls

Notation

Describes what the syscall does

[r0, r1, . . . , rn] ← n(p0, p1, . . . pm)

n is the name of the syscall

p0, p1, . . . pm are the parameters

r0, r1, . . . rn are the return values

C-binding

r0 = n(p0, p1, . . . pm, ∗r1, ∗r2, . . . ∗ rn)

Jon A. Solworth Secure OS Design and Implementation System calls

Syscall parameters

Name Type Description

status uint Result of system call
e EventId Event identifier
user string user name
fd Fd file descriptor
pid ProcessId Process ID
pgid ProcessId Process Group Id
tag string tag used to label objects
retirePair EventRetire value returned on evaluating an event
time Time time
fromMachine string from machine
toMachine string to machine
service string service
virtualProcess string virtualProcess
name string name of a file or directory
permission string access permissions process wants

Jon A. Solworth Secure OS Design and Implementation System calls

Process syscalls

create a process.

Fork returns a file descriptor to debug the child process which

allows the parent to

(1) communicate with the process to obtain termination information and

(2) debug the process/process termination.

level describes the process group level.

0 for no change

i > 0 for change level i through MaxProcessGroup of

process group to the forked process PID

[status, debug] ← fork(level)

Jon A. Solworth Secure OS Design and Implementation System calls

Process Groups

There are at most MaxProcessGroups associated with each
process

In practice, there can be less because duplicate entries reduce
the number of process groups

Values are replace from level i through MaxProcessGroups

Consider the process groups as a stack
1 Bottom of stack (least recently entered data)
...
MaxProcessGroups Top of stack (most recently entered data)

As such, process groups create a hierarchical structure

Jon A. Solworth Secure OS Design and Implementation System calls

Process syscalls (cont’d)

change the executable of a process to that of the fd

[status] ← exec(fd)

normal termination
[] ← exit()

get process’s ID

[pid] ← getPid()

get process’s user

[user] ← getUser()

set terminate portal virtual process

[status] ← setTerminatePortal(label)

Jon A. Solworth Secure OS Design and Implementation System calls

Fork/exec

P r o c e s s I d p a r e n t P i d = g e t P i d () ;
s t a t u s = f o r k (0 , &debug) ;
P r o c e s s I d p i d = g e t P i d () ;
i f (p a r e n t P i d != p i d) { // c h i l d

c l o s e (debug) ;

e x e c (f d) ; // must have p r e v i o u s l y opened
. . .
e x i t () ;

} e l s e { // pa r en t
. . .

}

Jon A. Solworth Secure OS Design and Implementation System calls

Events

Blocks until event tree is satisfied (see events document)

[status] ← block(EventTreetree)

Blocks on event and the retire event (see events document)

[status, returnPair] ← blockAndRetire(eventId)

beep at time from epoch

[status, e〈〉] ← beep(time)

e must be a completed event

[status, retirePair] ← retire(e)

Jon A. Solworth Secure OS Design and Implementation System calls

Events

cancel asynchronous event

[status] ← cancel(e)

returns vector of completed EventIds

[status, eventId []] ← getCompletedEvents()

returns vector of uncompleted EventIds

[status, eventId []] ← getPendingEvents()

Jon A. Solworth Secure OS Design and Implementation System calls

Event data structures

// s t r i n g s denoted wi th s i z e / p t r
typedef s t r u c t {

m s i z e t s i z e ;
void ∗ p t r ;

} MemStruct ;

// e v en t s r e t u r n MemStruct o r Fd
typedef s t r u c t {

MemStruct memStruct ; // s t r i n g v a l u e s
Fd f d ; // f i l e d e s c r i p t o r

} R e t i r e P a i r ;

Jon A. Solworth Secure OS Design and Implementation System calls

Timer example

S t a t u s
t s l e e p (Time t)
{ // s l e e p f o r s p e c i f i e d number o f nanoseconds

Time t ime = getTime () ;

t ime = timeAdd (time , t) ; // l i b r a r y r o u t i n e

s t a t u s = beep (time , &e v e n t I d) ;

s t a t u s = b l o c k A n d R e t i r e (e v e n t I d , &r e t i r e P a i r) ;

return s t a t u s ;
}

Jon A. Solworth Secure OS Design and Implementation System calls

Filesystem

read the (entire) contents of the file

[status, e〈result〉] ← read(fd)

write string to the file

[status, e〈〉] ← write(fd , string)

get the fileInformation of the file

[status, e〈fileInformation〉] ← fileInformation(fd)

Release the fd for the process

[status, e〈〉] ← close(fd)

synchronize written files of a process to disk

[e〈〉] ← sync()

Jon A. Solworth Secure OS Design and Implementation System calls

Files

File contain a single typed value

But that value is for a high level language

File operations read the current value or

write a new value

No seek

No file locking

No streams!

Jon A. Solworth Secure OS Design and Implementation System calls

Directories

Create a directory in dirFd with name name and label label

[status, e〈fd〉] ← createDirectory(dirFd , name, label)

Create a file in dirFd with name name and label label
[status, e〈fd〉] ← createFile(dirFd , name, label)

Open a subdirectory of dirFd with name name and permissions permissions

[status, e〈fd〉] ← openDirectory(dirFd , name, permissions)

Open a file of dirFd with name name and permissions permissions

[status, e〈fd〉] ← openFile(dirFd , name, permission)

Jon A. Solworth Secure OS Design and Implementation System calls

Directories (cont’d)

Get the next name greater than name in directory dirFd

[status, e〈name,type〉] ← getNextName(dirFd , name)

Remove a directory in dirFd with name name

[status, e〈〉] ← removeDirectory(dirFd , name)

Remove a file in dirFd with name name
[status, e〈〉] ← removeFile(dirFd , name)

Get file information for dirFd
[status, e〈fileInformation〉] ← fileInformation(dirFd)

Jon A. Solworth Secure OS Design and Implementation System calls

Directory

Directory operations don’t work on paths, just individual
name components

Directories provide a name space

Files are just variables

Directories are streaming

Can write to a directory

Each write creates a separate file indexed by time
Ethos has a nanosecond timer (in which successive accesses
give monotonically increasing time)
Works with concurrent processes

Hence, directories, IPC, networking are all streaming

Jon A. Solworth Secure OS Design and Implementation System calls

Directory/File

S t a t u s
readVar (Fd d i rFd , const char ∗name ,

MemStruct ∗memStruct)
{

S t a t u s s t a t u s ;
s t a t u s = o p e n F i l e (d i rFd , name , ” r ” , &e v e n t I d) ;
s t a t u s = b l o c k A n d R e t i r e (e v e n t I d , &r e t i r e P a i r) ;
Fd f d = r e t i r e P a i r . f d ;

s t a t u s = r e a d (fd , &e v e n t I d) ;
s t a t u s = b l o c k A n d R e t i r e (e v e n t I d , &r e t i r e P a i r) ;
∗memStruct = r e t i r e P a i r . memStruct ;

c l o s e (f d) ;
return s t a t u s ;

}

Jon A. Solworth Secure OS Design and Implementation System calls

IPC/Networking

equivalent of socket connect

[status, e〈fd〉] ← ipc(rpc, fromMachine, toMachine, service)

equivalent of socket bind

[status, e〈fd〉] ← advertise(rpc, toMachine, service)

equivalent of accept

[status, e〈fd〉] ← import(fd)

equivalent of accept only from user which owns the process

[status, e〈fd〉] ← importUser(fd)

Jon A. Solworth Secure OS Design and Implementation System calls

IPC/Networking

is there a new user waiting on the listening socket without a

corresponding virtual process

[status, e〈user〉] ← newUserWaiting(fd , virtualProcess)

Create if necessary virtual process owned by user. Send it the fd.

[status] ← fdSend(fd , user , virtualProcess)

receive fd owned by user which owns process

[status, e〈newfd〉] ← fdReceive()

Jon A. Solworth Secure OS Design and Implementation System calls

IPC/Networking

To unify IPC with networking, several things are needed:

Authenticate network connections (cryptographically)
Authorize network connections
Authentication of IPC is much cheaper
IPC authentication by process credential

Jon A. Solworth Secure OS Design and Implementation System calls

IPC/Network usage (server)

Bind equivalent

[s t a t u s , e] = a d v e r t i s e (rpc , toMachine , s e r v i c e) ;
[s t a t u s , l i s t e n F d] = b l o c k A n d R e t i r e (e) ;

Traditional accept

[s t a t u s , e] = i m p o r t (l i s t e n F d) ;
[s t a t u s , f d] = b l o c k A n d R e t i r e (e) ;

Per user accept (uses a virtual process)

[s t a t u s , e] = newUserWait ing (l i s t e n F d)
[s t a t u s , u s e r] = b l o c k A n d R e t i r e (e) ;
fdSend (l i s t e n F d , use r , p e r U s e r P r o c e s s) ;

Jon A. Solworth Secure OS Design and Implementation System calls

IPC/Network usage (client)

Client code

[s t a t u s , e] = i p c (rpc ,
fromMachine , toMachine ,
s e r v i c e) ;

[s t a t u s , f d] = b l o c k A n d R e t i r e (e) ;

Jon A. Solworth Secure OS Design and Implementation System calls

Terminate Portal

get the process groups.

[status,ProcessId []] ← getProcessGroups(fd)

get process status.

[status,ProcessStats] ← getProcessStatus(fd)

kill process associated with portal.

[status] ← kill(fd)

does the portal’s process still exist?

[status] ← isAlive(fd)

Jon A. Solworth Secure OS Design and Implementation System calls

Terminate portal

Ethos does not have a globally visible process table

Instead, process state is authorized on a per process basis

Conceptually, each user has its own process monitor

Which can monitor CPU usage and can kill only the user’s
processes

We can also build application monitors which can monitor
multiple process applications and restart applications (by
killing all its processes) and then restarting the process.

These monitors are solely responsible for implementing
process group semantics

Jon A. Solworth Secure OS Design and Implementation System calls

Terminate portal use

s e t T e r m i n a t e P o r t a l (‘ ‘ p r o c e s s M o n i t o r ’ ’)
// c r e a t e a p roce s s , which w i l l send a t e rm i n a t e p o r t a l to p r o c e s sMon i t o r
[s t a t u s , debug] = f o r k (2) ;

Jon A. Solworth Secure OS Design and Implementation System calls

Process monitor code (highly simplified)

whi le (1) {
[s t a t u s , e v e n t] = f d R e c e i v e () ;
s t a t u s = b l o c k A n d R e t i r e (event , &r e t i r e P a i r) ;
f d = r e t i r e P a i r . f d ;

i f (t y p e (f d)==T e r m i n a t e P o r t a l)
{

g e t P r o c e s s G r o u p s (f d) ;
// se tup t a b l e s

}
e l s e i f (t y p e (f d)==IPC)

{
// l i s t e n to i p c f o r u s e r r e q u e s t s

}
}

Jon A. Solworth Secure OS Design and Implementation System calls

Debug portal

Debug portal allows one process to debug another process

It can stop, single step, and continue processes

It can read and modify variables

It can determine the execution path

Jon A. Solworth Secure OS Design and Implementation System calls

Authenticate syscalls

user terminal authentication (blocking)

[status] ← authenticate()

Authentication occurs in the Ethos kernel

It could be password based or cryptographic (e.g., smart card)

It simply returns success or failure

Because of virtual processes, no need to ever change user of
the process

Jon A. Solworth Secure OS Design and Implementation System calls

Transaction

start a new transaction. Transactions are not nested.
[status] ← beginTransaction()

complete a transaction, returns true iff successful. (blocking)

[status] ← endTransaction()

abandon a transaction, undoing the operations

[status] ← abortTransaction()

Jon A. Solworth Secure OS Design and Implementation System calls

Transaction example

b e g i n T r a n s a c t i o n () ;
// o th e r system c a l l s

// t r a n s a c t i o n c o n d i t i o n s don ’ t hold , abo r t
i f (a c c o u n t S t a t u s == C l o s e d)

a b o r t T r a n s a c t i o n () ;

// o th e r system c a l l s

e n d T r a n s a c t i o n () ;

Jon A. Solworth Secure OS Design and Implementation System calls

Part IV

Conclusions

Jon A. Solworth Secure OS Design and Implementation System calls

Conclusions

Ethos system calls are

Low level, in that they are asynchronous

High level, in that they support:

types
network authentication and encryption transparently provided
strong authorization
transactions

intended to work with a high level programming language
(which provides types, exceptions, memory management)

intended to be used with (different) libraries

Jon A. Solworth Secure OS Design and Implementation System calls

