
Secure Operating System Design and
Implementation

Remote Procedure Call

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation RPC

Part I

Remote Procedure Call (RPC) overview

Jon A. Solworth Secure OS Design and Implementation RPC

Overview

Remote Procedure Call is

a procedure call mechanism

the procedure call invoker is the caller

the procedure execution is the callee

callee and caller are in different address spaces

any value from caller needed by the callee must be an RPC
parameter

Consider add(a, b)

a and b are sent from caller to callee
callee performs a + b, sends result to caller
caller read results and returns it as the result of add

Jon A. Solworth Secure OS Design and Implementation RPC

RPC structure

The RPC mechanism hides most of the details of inter-address
space communication

Writing the values out (called marshalling) by the caller

Reading the value in (called unmarshalling) by the callee

At the caller side, a stub is invoked (e.g., add)

At the callee side, a skeleton is invoked, which ultimately
invokes the remote procedure (e.g., add)

The stub and skeleton is generated by an RPC compiler

The input to the RPC compiler is the declaration of its
procedures (and possibly data)

Jon A. Solworth Secure OS Design and Implementation RPC



Marshalling/unmarshalling issues

marshalling and unmarshalling deals with:

data size parameters can have different size

data type parameters are typed

packet size there may be a limitation of the amount of data
which is sent as a unit.

in memory differences between “in memory” layout at the caller
and callee

on-the-wire differences between “in memory” and on-the-wire
layout.

Jon A. Solworth Secure OS Design and Implementation RPC

RPC advantages

modularity RPC implementation independent of remainder of
code

documentation RPC interface clearly documented

modifiable easy to change the RPC interface

optimization RPC implementation can be changed w/o
changing application

testing Easy to test RPC interface separately from its use
in applications

consistency skeleton and stub match since generated from
same specification

Jon A. Solworth Secure OS Design and Implementation RPC

Part II

RPC marshalling/unmarshalling issues

Jon A. Solworth Secure OS Design and Implementation RPC

Marshalling/unmarshalling issues

The biggest problem occurs when callee and caller are on
different computer architectures

Then the in-memory layout will be different for many things
at the callee and caller side

This requires the stub and skeleton to compensate for it

Jon A. Solworth Secure OS Design and Implementation RPC



Architecture type issues

size most easily compensated for by using
architecture-independent sizes

alignment architecture may require some n-byte objects (e.g.,
ints) to start at an address divisible by n.

type In general, integer and character work well, but
floating point does not. Char signedness may differ
between architecture.

pointers values are always relative to an address space

Jon A. Solworth Secure OS Design and Implementation RPC

Part III

Ethos RPC

Jon A. Solworth Secure OS Design and Implementation RPC

Ethos RPC

Ethos RPC is used to communicate between Ethos kernel and
Dom0 shadow daemon

Could be used in other places, for example:

IPC within Ethos
Networking between Ethos systems
And could be extended to work for Ethos’s file system

The direction we go in will depend on user space
programming language

But we are committed to maintaining types across address
spaces

Jon A. Solworth Secure OS Design and Implementation RPC

Asynchrony

RPC calls may have arbitrary latency

Thus, we would like to have multiple RPCs outstanding at a
time

Will therefor need to match call with response

An ID is needed for that purpose

Ethos RPC does not directly support asynchronous RPC,
rather it uses one-way RPCs.

Jon A. Solworth Secure OS Design and Implementation RPC



One-way RPCs

Ethos only uses one-way RPCs.

The RPC is from caller to callee with no return value.

To build a two-way RPC

Create an ID for the RPC instance
Do a one-way call, passing the ID
Callee invokes a reply RPC, passing the ID
The ID is used to match up the RPC call with reply

In Ethos, we’re using the eventId as the RPC identifier

Jon A. Solworth Secure OS Design and Implementation RPC

Parameters

Can be any of the following types

integers: int32, int64, uint32, uint64

characters: char8, uchar8

vectors of primitive types: A vector has a size and a number
of elements

Jon A. Solworth Secure OS Design and Implementation RPC

On-the-wire

The virtual packet is of the following form

The procedureId is a 32-bit unsigned integer

Each parameter takes up an integral number of 4-byte slots

Vectors have a 32-bit size plus an integral number of 4-byte
slots

Jon A. Solworth Secure OS Design and Implementation RPC

Part IV

Connections and real packets

Jon A. Solworth Secure OS Design and Implementation RPC



Connections and real packets

Each RPC flows over a connection

connection are multiplexed over a tunnel, such as an Ethernet
connection from Ethos to Dom0

The connection specifies the end-points of the communication

Over the connection, real packets (of a maximum size) flow

Thus large RPCs may need to be split into multiple real
packets

Jon A. Solworth Secure OS Design and Implementation RPC

Virtual packets

Virtual packets are limited in size only by memory

Physical packets are reconstructed on the receiving end into a
virtual packet

The virtual packet is then unmarshalled

Jon A. Solworth Secure OS Design and Implementation RPC

Part V

Conclusions

Jon A. Solworth Secure OS Design and Implementation RPC

Conclusions

RPC takes care of many low level protocol issues, enabling the
programmer to focus on communication pattern.

Ethos’s RPC supports integers and characters and vectors of
the same

It supports only one-way RPC, since it is a good building block
for asynchronous or synchronous RPC and is highly flexible

The RPC mechanism also supports connections (i.e., multiple
targets of the RPC).

Jon A. Solworth Secure OS Design and Implementation RPC


