
Secure Operating System Design and
Implementation

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

January 12, 2012

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Part I

What is an Operating System?

Jon A. Solworth Secure OS Design and Implementation (CS 491)

What is an Operating System?

1 Traditionally, an OS is the first layer of software

2 (All other software on the computer depend on the OS)

3 It allows safe sharing of the computer

4 It provides services such as file systems, networking, memory
management, process creation, authentication and
authorization.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

System software

1 The OS is part of the system software

2 The system software is layered for increasingly high level
abstractions

3 Ending ultimately with applications.

4 The OS is difficult to build because it is constructed on bare
metal, and hence does not have the software facilities
available to applications.

5 In addition:
1 OS is designed to run continuously (must not fail, must release

systematically storage no longer is use)
2 OS must deal with errors (hardware, out of memory)
3 OS must deal with hardware design (devices, privileged

instructions, etc.)

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Layering

Layering of software provides abstractions

Each layer provides new abstractions to the level above it

OS enables multi-tasking
(multiple things to be done concurrently)

The OS abstractions should be:

General purpose
Efficient
Secure

Typical layering (from lowest to highest)

OS Kernel (executes privileged instructions)
OS processes (unprivileged instructions)
Application processes (unprivileged instructions)

Note: unprivileged = user space

OS Kernel is itself layered

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Layering of user space

Everything in user space is a process. Processes are layered

Programming Language the language in which a program is
written

Libraries optional, general purpose code, typically
written in the same language as
application code

Application program code specific to solving a particular
problem

Note that there are processes which perform OS functions (OS
processes) which are structured in the same way.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Layering of the OS

Can layer within the OS kernel (monolithic kernel) or

Can layer outside the OS kernel with OS processes
(microkernel)

In either event, all privileged instructions are executed in the
kernel

Monolithic kernels treat the OS as one big program

Monolithic kernels are more efficient

Monolithic kernels have a single address space for OS code, a
bug in one component can effect other components.

Microkernels divide the OS into smaller programs

Are less efficient, use multiple address spaces

Popular OSs are monolithic

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Part II

What is this course all about?

Jon A. Solworth Secure OS Design and Implementation (CS 491)

What is this course all about?

Goal is to learn how to write an OS

Of course, there isn’t time to build a whole OS in this course

We’ll start from some assembly language and work our way
up.

Building the layers of abstraction in an OS

This will be invaluable experience

OS hackers need to be more precise than application hackers

We’ll talk about techniques which will improve your
programming

Thus increasing your skill even if you never again hack an OS

Jon A. Solworth Secure OS Design and Implementation (CS 491)

What background do you need?

experience and knowledge in writing C programs

understand computer architecture including assembly
language programming

understand deadlock, starvation, synchronization

you’ll be expected to use make, gdb, gcc, ld, ...

I’ll teach you the rest

but since I don’t know what you know

so you have to ask questions

Lots of questions

Jon A. Solworth Secure OS Design and Implementation (CS 491)

What background do you need?

experience and knowledge in writing C programs

understand computer architecture including assembly
language programming

understand deadlock, starvation, synchronization

you’ll be expected to use make, gdb, gcc, ld, ...

I’ll teach you the rest

but since I don’t know what you know

so you have to ask questions

Lots of questions

Jon A. Solworth Secure OS Design and Implementation (CS 491)

OS coding

OS is a difficult environment

Its large, modular, and highly interconnected

Many low-level issues need to be contended with

Storage allocation/Typing
Concurrency issues
Failures

Bugs typically crash the kernel

OS kernel is trusted code, failures violate security

Jon A. Solworth Secure OS Design and Implementation (CS 491)

OS coding (cont’d)

You need to know what you’re doing

You need to be conservative

You need to realize that all your skill is not enough

“A poor workman blames her tools”

“A good workman has sharp tools”

You need to separate learning about things

... from coding

So that your coding is as clean as possible

A program is to be read (and analyzed) by humans

Execution is a minor issue

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Systems programmers

There are many things you need to get right at the same time

You must try to learn as much as you can

System programmers re-implement and hone OSs

And think very carefully about small issues, in an attempt to
reduce errors

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Course project

Normally OS development

Computer for OS development (hack and compile)
Computer for OS target (run the OS)
Serial cable between them
Run a debugger front end on development computer
Run a debugger back end on target computer
A bug usually crashes target computer
Problem: need to integrate debugger support into target OS,
but initially there is no target OS

Virtual Machine (VM) based OS development

target is an OS in a VM
development environment is your computer
in a crash can freeze the VM
some VMs, such as Xen, have their own debugger support
so you get it when you start
and your OS can’t interfere with it much
ah, life is good

Jon A. Solworth Secure OS Design and Implementation (CS 491)

First assignment

Install VMware on your computer (free!)

Install Xen, Fedora in VMware (a VM on top of a VM)

Fedora will provide your development environment

And we’ll build a guest OS on top of Xen (which is running on
top of VMware) which is running on your host which can be
Windows or OSX or Linux

If you screw up anything, damage is limited to VM

Jon A. Solworth Secure OS Design and Implementation (CS 491)

What are my related research interests?

I’m building a new security oriented OS called Ethos which is
intended to make it far easier to write applications which
withstand attack.

How should an OS interface be designed to make systems
more secure?

What programming languages effect on construction of an
OS?

What kind of tools can be built to make OS more reliable?

What should the system software look like on top of the OS
kernel?

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Part III

Operating System Overview

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Overview

Definition

An Operating System (OS) provides a process abstraction.

Definition

A process is a program in execution; it is guaranteed to make finite
progress.

The term process derives from the term processor

When executed on a uniprocessor, the processor is virtualized
so that each process is allocated a virtual processor.

Process is about isolation, processes have limited interaction
with each other.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

More definitions

Definition

A logical mechanism is virtualized if it appears to exist, but doesn’t
actually. (Virtualization occurs in software).

Definition

A mechanism is transparent if it exists, but does not appear to do
so.

Definition

A mechanism is real if it exists and is visible.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Operating system structure

A process should be able to run with processor efficiency but must
have limited powers. To do this:

Unprivileged instructions for computations and

Privilege instructions which are reserved for the OS to manage
shared resources

Process execute only unprivileged instructions

The OS—in particular, the OS kernel—is the only entity
which can execute privileged instruction

The software thus consists of the OS kernel and processes.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Operating system kernel

The OS kernel also executes unprivileged instructions

Processes cannot execute privileged instructions, they rely
instead on kernel-exported abstractions (the kernel interface).

The kernel is a the center of the OS, which together with
processes implements the OS abstractions.

The kernel ensures that those OS abstractions are not
bypassed

The kernel traditionally provided the first level of software
abstraction on computers

And thus this abstraction level affects all software above it.

In particular, this abstraction has a critical impact on security.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Resource visibility

All of memory is visible to the OS

But a process can only see the memory allocated to it

Which prevent the process from seeing/modify other’s data

Hence, memory protection is part of the separation between
processes and kernel

And modifying memory protection is privileged

In addition, I/O devices are typically visible in the memory
address space

The same mechanism which protects kernel (and other
process’s memory) also protects I/O devices

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Architecture must enable the OS

To managed how memory is allocated to processes

To restrict the memory that a process can use

To ensure finite progress for processes

To provide a safe way of entering the kernel

To provide safe sharing of I/O devices

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Memory usage

The primary mechanisms partition memory, so that one or more
partitions can be allocated to a process. The fundamental methods
differed based on the partition characteristics:

fixed sized thus implement paging

variable sized thus implement segmentation

The creating of such partitions must be done by privileged
instructions.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Finite progress

Processes are running on the “bare metal”

Which means that a process which runs in a computational
loop, e.g.,

whi le (1)
;

will not ever voluntarily enter the OS

Hence, a means to force an involuntary transfer to the OS is
necessary to ensure other processes can run

That mechanism is a timer interrupt

The OS sets the timer interrupt before it begins executing the
process

When the timer goes off, the kernel is re-entered

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Safe entering of the kernel

Since a process cannot execute privileged instructions, it needs
the OS to perform them.

To request the OS to perform these operations, a system call
is used.

The system call simultaneously enters the kernel and sets the
privilege bit.

The entry points are defined by a vector, and indexed by
system call number.

This ensures that the entry points are well defined (and hence
can be appropriately guarded)

To return to the process, a return-from-interrupt instruction is
executed

Jon A. Solworth Secure OS Design and Implementation (CS 491)

I/O devices

I/O devices are typically accessed via device registers

Device registers are mapped to memory addresses

And hence protecting the memory address space of the I/O
device register is sufficient to protect the I/O device.

I/O devices have long latency associated with them

So interrupts are used to notify the OS when the device
finishes an operation.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Summarizing isolation

Isolation is provided by managing resources

Memory

I/O devices

CPU (for finite progress)

trap instructions (for safe transitioning from unprivileged to
privileged)

Jon A. Solworth Secure OS Design and Implementation (CS 491)

OS Layers

Xen

Interrupts

Paging

Context

Libraries

Device Driver

Console

. . .

F
ile

S
ystem

N
etw

ork
in

g

P
ro

cess

IP
C

...

SysCall Interface

P
ro

cess
1

P
ro

cess
2

P
ro

cess
3

P
ro

cess
4

P
ro

cess
5

Architecture

Specific Com-

ponents

Abstraction

Jon A. Solworth Secure OS Design and Implementation (CS 491)

OS facilities

In addition to isolation, OS provides abstractions

Process creation, scheduling, removal

Memory allocation, de-allocation

Filesystem read, write, organize, recovery on failure.

Networking support of Internet Protocol

IPC interprocess communication

Device I/O e.g., keyboard, mouse, and display

Authentication identification of external entities

Authorization (a.k.a. access controls)

Many abstractions are for controlled sharing.

Jon A. Solworth Secure OS Design and Implementation (CS 491)

OS interface

OS interface is critical. It should be:

Flexible enabling needed semantics to be implemented

Efficient so that resources are not wasted

Coherent so that different parts work together well

Long lived processes depend on the OS, and hence changes to
the underlying OS interface can break applications

Minimize error so that programs are easy to get right

Abstract so that its easy to program with

Jon A. Solworth Secure OS Design and Implementation (CS 491)

Conclusion

An OS implements a process abstraction

Processes are isolated from each other

Processes communicate with the outside world through
system calls to the OS kernel

The OS kernel operates in privileged mode, only software
which can execute privileged instructions

The OS kernel exports a number of abstractions to processes

These abstractions have a large effect on applications

Jon A. Solworth Secure OS Design and Implementation (CS 491)

