
Secure Operating System Design and
Implementation

Memory

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 20, 2011

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Background Overview

Part I

Memory Background

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Background Overview

User space and kernel space

Virtual address space includes a single process and the kernel

user space contains a process’s code and data

cannot access kernel space
executes only unprivileged instructions
described by regions

kernel space contains kernel code, data structures, plus some
information for each process.

executes unprivileged and privileged instructions
can access user space

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Background Overview

Memory protection

To ensure isolation between different processes, programs
must be prevented from writing, reading, or executing memory
which is not theirs.

Two ways to do this

Visibility: prevent programs from seeing memory which they
should not access
Permissions: provide finer-grained control for partial access,
e.g., read but not write

Memory protection provided by paging or segmentation

x86 architecture has a variety of modes which affect memory
protection

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Background Overview

Memory layout

unused page

kernel space

user space

User space from 0 to UserMaxAddr-1

kernel space from KernelMinAddr to
KernelMaxAddr

one unused page at top of address
space so that we can write iterations

f o r (a=KernelMinAddr ;
a <= KernelMaxAddr ;
a+= p a g e S i z e)
// do someth ing f o r each
// page i n k e r n e l memory

What happens w/o the unused page?

Depending on the memory model, Xen
hypervisor is mapped above the kernel

Jon A. Solworth Secure OS Design and Implementation Memory

Regions

Part II

Regions

Jon A. Solworth Secure OS Design and Implementation Memory

Regions

Regions

A process’s address space is divided into regions

text region is read only which holds both constants and
instructions

stack region contains local variables of procedures
heap is dynamically allocated (non-stack) storage

regions are logical constructs, protections typically provided by
paging

Jon A. Solworth Secure OS Design and Implementation Memory

Regions

Region semantics

Read-only regions may be shared

Writable regions can be shared if writes are rare,
called Copy on Write (CoW)

regions are marked copy on write
page table entries are marked read-only and point to a shared
page
on a write, a page fault occurs, the kernel is entered, and the
memory is replicated (coped) and made writable
successive writes need not be intercepted

Regions may allocated pages on demand (e.g., heap)

Ethos assumes that VM address space is large, and thus uses
fixed sized regions.

Jon A. Solworth Secure OS Design and Implementation Memory

Regions

Region use

fork Use CoW to copy parent process’s regions
writes will be caught by interrupt mechanism and kernel
makes copies

exec Replace the process’s region with new regions from file

exit Removes all process’s regions

heap in Ethos, static region given for heap.

stack in Ethos, static region given for stack.

Access to page in heap or stack region causes allocation.

Jon A. Solworth Secure OS Design and Implementation Memory

Process Structure

Part III

Process Structure

Jon A. Solworth Secure OS Design and Implementation Memory

Process Structure

Process structure

A process structure is maintained in the kernel for each
process in user space

It contains information which cannot be trusted to user space

For example:

the user on whose behalf the process executes
the executable label
the process-specific state of all resources in use by the process
the memory regions, page table, kernel stack associated with
the process
the events of the process
the current state of the process

Because the process structure is maintained in the kernel, no
matter what the process does, the kernel can use it to clean
up after process exits

Jon A. Solworth Secure OS Design and Implementation Memory

Process Structure

Per-process kernel stack

In a traditional monitor model, the process can sleep on an
event.

When the process resumes in the kernel, it needs to resume
with its own state.

Which is kept on the process’s kernel stack.

Right now, Ethos has a kernel stack per process

Ethos system calls, however, are designed for the most part to
be non-blocking

Event processing is where (most of) the blocking is, so

Jon A. Solworth Secure OS Design and Implementation Memory

Process Structure

Event stacks

We are considering providing per-event stacks

Single stack can be shared between all processes since no
system call blocks
This is almost true, but we do have a few blocking syscalls
(e.g.,block)

Blocking primarily occurs in event processing, so

Create a stack for processing
The stack evokes an Event Driven Thread (EDT)
E.g. createDirectoryEvent might be the blocking code
which is used to create a directory.
The EDT is non-preemptive
The EDT may block on events (rpc, networking, ...)
When the EDT is finished, it marks the event as completed
and frees the stack

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Protection

Part IV

Buddy Allocator

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Protection

Buddy allocator

In Ethos

After the kernel loads, it places all unused pages under the
control of the buddy allocator

These pages are all mapped to kernel addresses

Some of them are needed for PTEs—and as per Xen—each
PTE must be read only.

Ethos is intended for 64-bit machines which has sufficient
virtual address space

(Ethos currently is 32-bit)

Even when allocated to user space, pages are mapped to the
kernel

Jon A. Solworth Secure OS Design and Implementation Memory

Memory Protection

Buddy allocator (cont’d)

Buddy allocator enables allocations in powers of two (called
the order)

The allocator partitions and coalesces allocations

Pages allocated for kernel use are a power of two in size and
are allocated in place

Pages allocated for user space are individually remapped and
thus singleton pages are used for this purpose

Jon A. Solworth Secure OS Design and Implementation Memory

Buddy Allocator

Part V

Slob Allocator

Jon A. Solworth Secure OS Design and Implementation Memory

Buddy Allocator

Slob allocator

The page allocator is the most efficient way of allocating large
objects

For smaller objects, the slob allocator is used

The slob allocator can be used in one of two ways

Fixed sized and type objects which can have initialization
constructors
Variable sized string

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Part VI

Interrupts and Exceptions

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Interrupts and exceptions

To perform I/O, processes need to request the OS to perform
operations on their behalf

Cannot branch into the OS for at least three reasons:

Cannot access kernel memory
Must enter only at well-defined entry points (allowed
functionality) where inputs are checked
Fixing kernel addresses in a process is a problem if there are
changes to the kernel

Solution is to have the kernel define an interrupt vector, and
allow processes to specify an interrupt number within a
specified range.

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Types of exceptions

faults precise exceptions which allow instruction restart.
Any machine changes prior to fault are undone.

traps precise exceptions in which the instruction completes
execution. Restart begins at the next instruction.

aborts imprecise exception which do not allow reliable
instruction restart.

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

System calls

System calls performed using an interrupt

Need to pass parameters

In Ethos, three registers are used for syscall

syscall number
pointer to input parameter to syscall
pointer to output parameter to syscall

The input and output parameters may be structures, enabling
multiple values to be passed in each direction.

the call is made by an int 80 (interrupt 80)

the status is passed back on the stack

this calling sequence is not at all optimized, but it is flexible

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

System calls

System calls can return variable size values

(This is not the case with UNIX, in which storage is
preallocated).

Ethos pre-allocates the storage

If there is insufficient space, userspace will allocate storage
and then the syscall wrapper will get the return value

this mechanism is integrated with Ethos’s retire semantics

the mechanism is designed to conveniently allow many return
values

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Interrupts and Exceptions

0 Integer Divide-by-zero
1 Debug exception
2 Non-maskable interrupt
3 Breakpoint exception
4 Overflow exception
5 Bound range exception (BOUND instruction)
6 Invalid opcode
7 Device not available exception
8 Double-fault exception
9 Co-processor overrun exception (Reserved in X86-64)
10 Invalid TSS exception
11 Segment-not-present exception
12 Stack exception
13 General protection exception
14 Page fault exception
15 (Reserved)

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Interrupts and Exceptions (cont’d)

16 x87 floating point exception
17 Alignment check exception
18 Machine check exception
19 SIMD floating point exception
0-255 software interrupt
Any Hardware maskable interrupt

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Interrupt types

terminal errors machine check exceptions

ill formed program invalid opcode, general protection exception,
alignment check exception

ill formed kernel invalid TSS

features integer divide by zero, debug, breakpoint,
overflow, floating point exceptions, SIMD
exceptions

paging page fault exception

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Ethos interrupt handling

panic on terminal errors, ill-formed kernel, or ill formed
program when operating in kernel mode

handle page faults

ignore some unhandled interrupts when they occur in
processes

terminate some processes on unhandled interrupt

Jon A. Solworth Secure OS Design and Implementation Memory

Slob Allocator

Xen events and Ethos usage

Xen intercepts interrupts and produces events for the
appropriate VM

Most of these events are currently ignored by Ethos

Except those which are so bad that they are used to panic the
kernel

Jon A. Solworth Secure OS Design and Implementation Memory

