
Secure Operating System Design and
Implementation

File System

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation File system

Part I

File system overview

Jon A. Solworth Secure OS Design and Implementation File system

Overview

A file system is one of the most important components of an
OS.

It is the only OS component which is designed to withstand
failure of the OS.

For this reason, updates to the file system must be made very
carefully.

Because failure can happen at any time

And the system should still reboot and get to a consistent
state.

Jon A. Solworth Secure OS Design and Implementation File system

Part II

Disks

Jon A. Solworth Secure OS Design and Implementation File system



Disks

Mechanical disk drives are still the primary storage for desktop
systems

A disk drive contains one or more discs

Each disk consists of a set of concentric circles (tracks) on
which data is written.

Each track is divided in disk blocks containing data, error
correcting codes, and control information

A disk spins at constant revolution per minute

A disk head reads (or writes) data on the disk

In a hypothetical one track disk, a read occurs by

waiting for the desired block to come under the disk head and
then
reading the block (including its error code)

Jon A. Solworth Secure OS Design and Implementation File system

Disk arms

Of course, disks have multiple surfaces

and each surface has multiple tracks

A disk arm moves perpendicularly between the outer- and
inner-most tracks on the disk

So now a disk access needs first to move the arm (called a
seek)

and then wait for the disk block to rotate under the disk
(called rotational latency)

Followed by the read (or write) causing the third time
component the transfer

Jon A. Solworth Secure OS Design and Implementation File system

More about disks

More about seeking

The disk arm is mechanical and tracks are packed closely
together

Hence, disk arms must move to the track and check whether
it is on the right track by reading the block header.

If it’s not, the process repeats

More about block layout

Tracks at the outer edge are much larger than those at the
inner edge

So more blocks can be kept in an outer edge track

Keeping approximately constant the track bit density

But varying bit read and write speeds

Jon A. Solworth Secure OS Design and Implementation File system

More about disks (cont’d)

Disks cache data

May reorder operations to write/read more efficiently

May not have written data to disk before returning

The best greedy algorithm is Shortest Service Time First
(SSTF), which picks the next I/O to do with the smallest
rotational latency plus seek time

Jon A. Solworth Secure OS Design and Implementation File system



Part III

Ethos file system

Jon A. Solworth Secure OS Design and Implementation File system

Ethos file system

Ethos file system contains files and directories

And terminal input and terminal output

File-system-like entities also include Inter-Process
Communication and Networking

Each file system entity has a label (used to determine which
processes can access it)

Jon A. Solworth Secure OS Design and Implementation File system

Ethos directories

Directory is organized in a tree

A directory specifies a name type

All files and sub-directories of a directory have the same type
for a name

Directory entries are (logically) kept in sorted order and thus
can be iterated through

Directories can be very large and are (logically) kept as a
B-tree

Directories are to be viewed as dictionaries (providing a name
to object map)

Directories can be given a name to open, not a path

Jon A. Solworth Secure OS Design and Implementation File system

Ethos files

Each file in the directory corresponds to a high level language
variable, it is read or written atomically.

Hence there is no seek and no current file position to
maintain.

The read system call does not know the size of the file to be
returned, so that is dynamically negotiated with user space (in
the retire system call)

Jon A. Solworth Secure OS Design and Implementation File system



Streams (sequences)

In contrast to UNIX, Ethos files are not streams (sequences)

But terminals are sequences

As directories can be sequences (when index by time).

Which means that read and write are defined over directories
need to check the details here

IPC and Networking remain sequences

Jon A. Solworth Secure OS Design and Implementation File system

Terminal I/O

Output to the terminal of binary objects is automatically
converted to strings

There is no random garbage that occurs on the terminal
screen

The output is invertible, it can be read back in by terminal
input

The goal is to have binary and textual live seamlessly together

This component needs to wait until we have a higher level
programming language.

Jon A. Solworth Secure OS Design and Implementation File system

Part IV

File system operations

Jon A. Solworth Secure OS Design and Implementation File system

File system operations

We aren’t actually building a file system

Instead we’re borrowing Linux’s file system (on Dom0)

This saves us from doing block allocation, inode/directory
implementation, file system recovery

In return we have to build a communication to Dom0 to
request file system operations

The operation is performed by shadowdaemon process which
runs as root in Dom0.

We’ll use Ethos RPC to communicate between the
shadowdaemon and Ethos kernel.

Jon A. Solworth Secure OS Design and Implementation File system



Anatomy of a file system operation

Files and directories are described by file descriptors (Fd) local
to a process.

Each valid Fd maps to a 64-bit unsigned resource descriptor
ID (RdId)

RdId’s are globally unique in Ethos and never recycle

Consider an allocation every nano-second

64-bits gives 234 seconds or about 500 years

The RdId maps to a FileInformation structure which contains
information about the file in Ethos.

The FileInformation, if not present as the result of a previous
call, is fetched from the shadowdaemon when creating a FdId

Jon A. Solworth Secure OS Design and Implementation File system

Getting the file information

An event is created to perform the remaining work after the
shadowdaemon replies

An RPC for fileInformation is sent to the shadowdaemon

The shadow daemon gets information on the file

An RPC for fileInformationReply is sent from the
shadowdaemon to Ethos

It is paired to the event

Which then completes processing on the event

Jon A. Solworth Secure OS Design and Implementation File system


