
Secure Operating System Design and
Implementation

Events

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation Events

Part I

Events overview

Jon A. Solworth Secure OS Design and Implementation Events

Overview

Events are associated with actions which have non-trivial
latency

For example, an event may be to wait for:

A Timer to expire
An RPC to complete
A packet to arrive

Events enable syscalls to complete quickly, returning an
eventId which will be later used to retrieve the data from the
completed syscall

A single process can have multiple events outstanding, and
wait to act on the events as they arrive

Note that Ethos Events (described here) are distinct from the
similarly named XenEvents which is a signalling mechanism.

Jon A. Solworth Secure OS Design and Implementation Events

Part II

Event trees

Jon A. Solworth Secure OS Design and Implementation Events



Event trees

A major cost is an OS is a context switch, which changes the
process which is executing.

Allowing a process to create many events and only be awoken
when the relevant condition is satisfied reduces context
switches

Ethos thus allows a process to wait (via block) on a tree of
events, and to specify which combination of events need to
complete before the process is awoken (i.e., context switched
into).

For example, a process may do several disk reads and wait on
all of them to complete or the arrival of a new request.

Jon A. Solworth Secure OS Design and Implementation Events

Event trees

Event tree is an n-ary trees

Each leaf is an event

Each internal node specifies the number of children which
must complete before the internal node completes.

The tree can thus represent and, or and thresholds

Jon A. Solworth Secure OS Design and Implementation Events

Part III

Event completion

Jon A. Solworth Secure OS Design and Implementation Events

Event completion

After an event completes, the event can be retired.

Retiring an event returns the values as specified by the system
call which created the event.

For example, retiring a read returns a status and the object
read

While retiring a write returns just a status

Jon A. Solworth Secure OS Design and Implementation Events



Part IV

Internal event processing

Jon A. Solworth Secure OS Design and Implementation Events

When are events processed?

If events were processed at any time, it could cause race
conditions with other code in the kernel.

Thus interrupts are designed to be mostly deferred until
system call has completed

Right before the return to user space.

At that point it is safe to execute the events

And hence the synchronization is only needed between the
producer and consumer of the Ethernet queue to ensure the
RPC packets are passed properly.

Jon A. Solworth Secure OS Design and Implementation Events

Internal event processing

Consider an event created for an RPC

The eventId is passed to the shadowdaemon as a parameter

The same eventId is returned to Ethos when the
shadowdaemon completes the RPC

The event is looked up (using the EventId handle)

The values from the RPC can be stored in the event or effect
some other data structure such as FileInformation.

If the processing is complete on the event, then complete is
called.

Otherwise the next step in the event occurs.

In addition, there may be other events which are queued up
behind the current event, and these are processed as well.

Jon A. Solworth Secure OS Design and Implementation Events

Memory

Once the init process starts, the kernel is always executed in
the context of some process.

At the time of the system call, the context is the process
invoking the system call

But later, when events are triggered, the context is a different
process

Therefore it is important the copies to and from user space
only occur in syscall.c

Jon A. Solworth Secure OS Design and Implementation Events


