
Secure Operating System Design and
Implementation

Ethos Tour

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part I

Ethos Tour Overview

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Overview

This set of slides is a tour through the Ethos source code

Ethos obtains significant advantage by implementing on top
of Xen

Much simpler I/O device interface

Availability of a paired OS for performing OS services such as
file system.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Architectural Components

An operating system can be targeted to different architectures

Ethos is designed for 64-bit architectures

Which means its designed for architectures with considerable
resources, especially memory

Ethos current implementation is 32-bit

Ethos will probably have two ultimate architectures,
x86 and ARM.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Architectural Components

An OS is implemented in two layers

The base abstractions using machine dependent layer

On top of that a far larger machine independent layer is built

To port to a different architecture, need only implement a
machine dependent layer

This assumes that the layering is properly done

And that takes a while, so we’ll concentrate on a single
architecture for now

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part II

Architectural dependent components

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Architectural dependent components

The architectural dependant components include:

Types are used to express size requirements of different
components of the OS

The compiler generates machine language for the architecture
(only non-privileged instructions)

The machine dependent OS components include:

The privileged instructions
Architectural dependent data structures
Bits of glue logic (such as for system calls)

Since Ethos is built on top of Xen, it does not have any
privileged instructions

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Architectural dependent source files

arch/x86 contains the code for both 32-bit and 64-bit x86
architectures

The 32-bit code works in non-PAE mode

The PAE mode and 64-bit code are residuals from Mini-OS

debug.c: performs a register dump on crash

archPageTable.c multilevel page table operations (exports a
flat page table with R/W permissions)

minios-x86 32.lds: 32-bit load script for the OS

sched.c scheduling and process code.

setup.c various bits of code for Ethos start up

time.c time using Xen’s time facilities

trap.c setting up traps and interrupts using Xen events

x86 32.S assembly glue code for traps, etc.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Architectural dependent include files

include/ethos/x86 contains the architecture dependent files

archMemory.h exports a flat page table info to architecture
independent portion of OS

archPageTable.h is the internal hierarchical page table

arch debug.h interface to dump registers

arch elf.h interface to elf object loader for user space

arch sched.h interface to scheduling and process primitives

bits.h low-level locking primitives

cpu.h low-level CPU definitions, such as interrupt numbers,
etc.

ldsyms.h symbols set by the linker script

synchro.h various types of memory barriers defined

x86 32/hypercall-x86 32.h hypercalls for the x86 32-bit
architecture

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part III

Architecture-independent components

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Architecture-independent components

Primary directories

console Xen console devices. This is the code that processes
Xen error messages

net Xen pseudo ethernet driver code.

file Filesystem implementation

mm Memory management

process process support, including process scheduling

rpc remote procedure call support for communicating
with the shadowdaemon

syscall system call interface

userspace contains the shadow daemon

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part IV

Xen Components

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Xen components

Ethos is not intended to be run stand alone, and hence is
dependent on Xen.

Parts of the Xen-interfacing components in the architecturally
dependent components

Others are in the Xen directory

The include files for Xen are in include/xen

The Xen include files are currently from Xen version 3.2, and
of course follow Xen coding style

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Xen

The xen directory includes:

xenPageTable.c includes procedures to:

Switch the current page table being used (this is part of a
context switch)
To pin and unpin pages. Pinned pages are maintained in the
Xen hypervisor to minimize checking of page reference.

xenSchedule.c schedule the Ethos OS vs. other OSs running
under Xen.

xenGrant.c grant pages are pages which are shared between
multiple OSs. Xen provides mechanism by which pages can be
shared and sharing changing. This is used for device drivers
(in particular, ethernet pseudo devices).

xen hypervisor.c Hypervisor commands which should be
moved to other files.

xenbus.c provides Xenbus/Xenstore interface to store and
retrieve name-value pairs.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part V

Include file overview

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Include directories

include/ethos include files which are used only within the
Ethos kernel

include/userspace this are include files which are used both within
the Ethos kernel and by Dom0 and/or Ethos
user space

include/xen include files from Xen

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part VI

Initialize

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Initialize components

Initialize starts up the kernel

kernelInitialize.c initializes the Ethos kernel

initial store.c is an initial file system kept in RAM. We
will be getting rid of this component, as the file system
stabilizes.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

KernelInitialize

Steps to initialize (boot start up code):

1 arch init Architectural specific initialization

2 trap init Initialize interrupt vector

3 xen event init initialize Xen events

4 sti enable interrupts

5 consoleInit initialize the console

6 setup xen features

7 memoryInit initialize virtual memory

8 xen grant init initialize grant memory for pseudo-devices

9 init time initialize wall clock time computation

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

KernelInitialize (cont’d)

10 eventInit initialize Ethos events

11 xenbus init

12 netInit initialize the network interface

13 pairedConnection set up connection to Dom0
shadowdaemon

14 fileSystemInit initialize file system

15 initstor init initialize the initstor

16 debug init read in debugging info for the Ethos kernel

17 scheduleInit creates the init process, after which Ethos is
up and running.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part VII

Shadow daemon

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Shadow daemon

userspace/dom0/shadowdaemon contains the userspace code for
the shadowdaemon in Dom0

The shadow daemon is a Dom0 process

It performs services for the Ethos kernel

Most notably, file system operations

This includes read, write, search, and create operations

It’ll also be useful for networking

Eventually, we’ll eliminate the shadowdaemon,

But as an implementation strategy, it enables us to scaffold
and build the syscall interface faster.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part VIII

Remote Procedure Call

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Remote Procedure Call (RPC)

Ethos deals with typed data

In the file system,
for inter-process communication, and
across the network.

The most flexible way of implementing this is RPC

RPC right now is used between the Ethos kernel and Dom0
shadowdaemon

That means that the RPC code needs to be compiled in both
environments

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

RPC components

netInterface.c provides the interface to network device.
This is the “logical” interface, the “physical” interface is
either Xen’s net front or UNIX sockets.

tunnel.c provides a logical conduit between two network
interfaces

connection.c is a logical connection. Each connection is
associated with a tunnel, a tunnel can support an arbitrary
number of connections.

procedure.c stores and looks up the RPC specification

rpcInterface.c describes how to marshall and unmarshall
RPC types

rpcType.c describes the primitive types and vectors of the
primitive types.

packet.c connections are implemented with a sequence of
packets

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Procedure-dependent components

RPC allows an interface to be defined consisting of a set of
procedure

ethosRpc.c describes the remote procedures. It consists of
two types:

procedureDispatcher invokes a procedure. It has a case
statement with an entry for each procedure.
rpcInit describes the remote procedures in a table format.

It is possible to automatically generate ethosRpc.c from a
short description, but to do that, we would need an IDL
compiler. Unfortunately, we haven’t gotten around to writing
one yet.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part IX

Devices

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Devices

Ethos devices are pseudo devices provided by Xen

There are three principle pseudo devices in Xen

console the OS console supports I/O
network Xen can export a number of ethernet network

devices to which ethernet packets can be
sent/received

block block devices, which can be read and written,
are the abstraction for disk drives

Since Ethos’s file system is implemented on Dom0, we don’t
currently use the block pseudo-device

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Console

In console/console.c

Provides printk, the kernel printf equivalent

in console/xencons ring.c

Contains the interface to a 2 kilobyte Xen-based console buffer

Not invoked directly, but only through console.c

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Net

There are three externally facing functions in net/net.c

1 netInit initialize network interfaces

2 netSend send a packet to the network

3 netIncoming process incoming packets

net/xenNetInterface.c are the Xen interface. There needs to
be more code moved from net.c to xenNetInterface.c.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part X

Memory management

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Memory Management

kmap.c these are reserved mapping in the kernel so that
Ethos doesn’t run out of memory at inopportune times.

memoryInit.c initializes the memory subsystem

pageAllocator.c allocate pages using a buddy allocator. At
kernel initialization, all unallocated pages are put into the
buddy allocator.

pageFault.c handles page faults

pageTable.c exports a flat page table abstraction to rest of
OS

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Memory Management

pmem.c this manages memory for a single process.

slob.c sub-page allocator

vaddr.c checks whether virtual addresses are mapped into
the virtual address space.

vma.c manages process regions

vmalloc.c a second buddy allocator

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part XI

File system

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

File system

directory.c directory operations to open, create, and delete
directory entries.

file.c file operations to read and write

fileSystem.c create initial in memory data structures to
access file system.

mode.c permission string to/from integer values for access
type

resourceClose.c close a resource descriptor

terminal.c terminal read and write

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part XII

Process

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Process

process.c manages processes, including creating, deleting,
and blocking processes.

fileDescriptor.c is the per-process file descriptors

schedule.c is scheduling for processes, which happens when
a process blocks or is coming out of a (completed) system call.

elf.c loads elf file into a process on exec or creation of init
process.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part XIII

Syscalls

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Syscalls

System calls are the invocation of OS facilities from user space

Ethos syscalls pass the values in the registers

Syscall number
Pointer to input parameter structure
Pointer to output parameter structure

System calls must check that parameters are valid

Including that pointers are to allocated memory in user space

In addition, Ethos returns values whose size is not known
when the call is made.

Note that syscall/syscall.c is the kernel side of system
calls, the user side is in sub-directories userspace/ethos/

called libsyscall

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Syscall macros

getArgs(var) gets the argument structure and puts the result in
var. This retrieves the fixed sized arguments

getMemStruct(memStruct) gets a variable size MemStruct, which
is a pair of size and pointer. The memStruct is one
of the arguments retrieved by getArgs. Allocates
space in the kernel for the variable sized structure.

putReturn(var) put the fixed sized components of the value to be
returned to user space.

putMemStruct(memStruct) puts the variable sized components of
return value back to user space.

These macros branch to done if the macros fail. The variable size
putMemStruct is mostly used in retire.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Part XIV

Abstraction

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

Abstraction

Ethos has a number of abstractions used to build higher level
OS mechanisms.

These include

handle.c Handles are 64-bit values which map to objects and
are guaranteed to never repeat.
event.c Events which provide support for asynchronous I/O.
Note that these are Ethos Events, not Xen Events.
eventTree.c EventTrees which provide blocking on and/or
trees of events
timer.c timers events which represent time
resource.c resources such as file descriptors, directory
descriptors, and their management on significant events.

Jon A. Solworth Secure OS Design and Implementation Ethos Tour

