
Secure Operating System Design and
Implementation
Concurrency

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part I

Concurrency Background

Jon A. Solworth Secure OS Design and Implementation Concurrency

Concurrency

Concurrency plays a fundamental role in Operating Systems

Concurrency is inherent in OSs

OSs support multiple users concurrently
OSs support multiple programs running concurrently
I/O devices which operate concurrently with CPUs
Multiple CPUs (Cores)

Concurrency difficult to get right

Race conditions extraordinarily difficult to analyze
Concurrency explodes the number of interactions
Concurrency occurs at the hardware level, but programming
abstractions are at the software level

Concurrency is difficult to exploit

Hard to find coarse grain concurrency
Hard to efficiently exploit fine-grain concurrency (beyond ILP)

Jon A. Solworth Secure OS Design and Implementation Concurrency

Concurrency

Concurrency plays a fundamental role in Operating Systems

Concurrency is inherent in OSs

OSs support multiple users concurrently
OSs support multiple programs running concurrently
I/O devices which operate concurrently with CPUs
Multiple CPUs (Cores)

Concurrency difficult to get right

Race conditions extraordinarily difficult to analyze
Concurrency explodes the number of interactions
Concurrency occurs at the hardware level, but programming
abstractions are at the software level

Concurrency is difficult to exploit

Hard to find coarse grain concurrency
Hard to efficiently exploit fine-grain concurrency (beyond ILP)

Jon A. Solworth Secure OS Design and Implementation Concurrency

Concurrency

Concurrency plays a fundamental role in Operating Systems

Concurrency is inherent in OSs

OSs support multiple users concurrently
OSs support multiple programs running concurrently
I/O devices which operate concurrently with CPUs
Multiple CPUs (Cores)

Concurrency difficult to get right

Race conditions extraordinarily difficult to analyze
Concurrency explodes the number of interactions
Concurrency occurs at the hardware level, but programming
abstractions are at the software level

Concurrency is difficult to exploit

Hard to find coarse grain concurrency
Hard to efficiently exploit fine-grain concurrency (beyond ILP)

Jon A. Solworth Secure OS Design and Implementation Concurrency

Notation for sequential and concurrent execution

opi be an operation, where i ≥ 0

op0; op1 mean sequential execution,
op0 executes and then op1

op0||op1 means that op0 executes concurrently with op1

Jon A. Solworth Secure OS Design and Implementation Concurrency

Atomicity

Fundamental to any discussion of concurrency is atomicity.

Definition (atomic operation)

A sequence of operations is atomic if either all the results of the
operations are visible to external entities or none of them are.

What is atomic on a computer?

Architecture Machine instructions

OS System calls

Its up to the architects to make machine instructions atomic,

up to OS designers to make system calls atomic

Syscall atomicity is provided in a variety of ways

Jon A. Solworth Secure OS Design and Implementation Concurrency

Atomicity

Fundamental to any discussion of concurrency is atomicity.

Definition (atomic operation)

A sequence of operations is atomic if either all the results of the
operations are visible to external entities or none of them are.

What is atomic on a computer?

Architecture Machine instructions

OS System calls

Its up to the architects to make machine instructions atomic,

up to OS designers to make system calls atomic

Syscall atomicity is provided in a variety of ways

Jon A. Solworth Secure OS Design and Implementation Concurrency

Atomicity

Fundamental to any discussion of concurrency is atomicity.

Definition (atomic operation)

A sequence of operations is atomic if either all the results of the
operations are visible to external entities or none of them are.

What is atomic on a computer?

Architecture Machine instructions

OS System calls

Its up to the architects to make machine instructions atomic,

up to OS designers to make system calls atomic

Syscall atomicity is provided in a variety of ways

Jon A. Solworth Secure OS Design and Implementation Concurrency

Atomicity

Fundamental to any discussion of concurrency is atomicity.

Definition (atomic operation)

A sequence of operations is atomic if either all the results of the
operations are visible to external entities or none of them are.

What is atomic on a computer?

Architecture Machine instructions

OS System calls

Its up to the architects to make machine instructions atomic,

up to OS designers to make system calls atomic

Syscall atomicity is provided in a variety of ways

Jon A. Solworth Secure OS Design and Implementation Concurrency

Atomicity

Fundamental to any discussion of concurrency is atomicity.

Definition (atomic operation)

A sequence of operations is atomic if either all the results of the
operations are visible to external entities or none of them are.

What is atomic on a computer?

Architecture Machine instructions

OS System calls

Its up to the architects to make machine instructions atomic,

up to OS designers to make system calls atomic

Syscall atomicity is provided in a variety of ways

Jon A. Solworth Secure OS Design and Implementation Concurrency

Outcome of concurrent execution is non-deterministic

Assuming each opi is atomic

let op0||op1 results in either

op0; op1 or
op1; op0

Consider (op0; op1)||(op2; op3) is equivalent to one of the
following

op0; op1; op2; op3 or
op0; op2; op1; op3 or
op0; op2; op3; op1 or
op2; op0; op1; op3 or
op2; op0; op3; op1 or
op2; op3; op0; op1

Note that the sequential ordering is preserved as a partial
ordering

Jon A. Solworth Secure OS Design and Implementation Concurrency

Sequential, Concurrency vs. Parallelism

Definition

Consider a set of operations to be executed op0, op1, . . . opn and
an execution order which is a partial order. If opi < opj then in
any valid execution the results of opi are seen by opj .

Definition

In a sequential execution, the execution order is a total order.

Definition

In a concurrent execution, the execution order is not a total order.

Definition

in a parallel execution, some operations are executed
simultaneously.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Synchronization

the purpose of synchronization is to impose additional
ordering on executions

For example, given a critical section once the critical section is
entered by process p, no other process can enter it until p
exits the critical section.

A race condition occurs when there is inadequate
synchronization and undesirable executions are possible.

Other problems include deadlock and starvation.

Starvation is generally handled by priority aging

Jon A. Solworth Secure OS Design and Implementation Concurrency

Not all concurrency is hard

Many things going on at the same time does not necessarily
cause problems

Problem is only when concurrent entities interact

That is when one entity influences the behavior of another

For example, one entity writes a location that another reads

Or even one entity writes a location that another writes

Jon A. Solworth Secure OS Design and Implementation Concurrency

Memory concurrency operations

Read and Write are atomic operations

Read-Read Read X || Read X
Value read does not depend other read

Read-Write Read X || Write X
Value read depends on whether the read occurs
before/after write

Write-Read same as Read-Write

Write-Write Write X || Write X
Last value written depends on order

Jon A. Solworth Secure OS Design and Implementation Concurrency

Process concurrency

What are the process concurrency issues?

Each process has its own private address space

No process can see another process’s memory

Hence there are no memory races

OK to preempt a process

Only way processes interact is via system calls

system calls atomic

Only system calls semantics determine process issues with
concurrency

Above assumed that there is no shared memory or threads

Jon A. Solworth Secure OS Design and Implementation Concurrency

Kernel concurrency

What are the sources of kernel concurrency?

Multiple CPUs (multi-core CPUs)

Interrupts

Doing something while waiting for an external event such as

Network packet
Keyboard press
Disk access
Time

In a modern OS, most processes are waiting for external
events.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part II

Monitors

Jon A. Solworth Secure OS Design and Implementation Concurrency

Monitor

The classical kernel is represented as a Monitor.

Definition (Monitor)

A monitor is an object which is invoked by a process, at most one
process at any given time is executing in the monitor.

In particular, a process

enters the monitor by invoking one of the monitor’s method

exits the monitor by returning from the invoked method

can put itself to sleep (stop executing) by waiting for an event
or

can signal an event, causing all processes waiting on that
event to be eligible to run.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Monitor example

moni to r ProducerConsumer {

p r i v a t e :
u i n t d e q u e u e I n d e x =0,

e n q u e u e I n d e x =0;
const i n t S i z e = 1 2 8 ;
Elmt b u f f e r [S i z e] ;

p u b l i c :
Elmt dequeue () ;

void enqueue (Elmt e) ;
}

Jon A. Solworth Secure OS Design and Implementation Concurrency

Monitor example (cont’d)

Elmt dequeue ()
{ whi le (d e q u e u e I n d e x == e n q u e u e I n d e x)

w a i t (notEmpty) ;
Elmt e = b u f f e r [d e q u e u e I n d e x%S i z e] ;
d e q u e u e I n d e x++;
s i g n a l (n o t F u l l) ;
return e ;

}

void enqueue (Elmt e)
{ whi le ((e n q u e u e I n d e x − d e q u e u e I n d e x) == S i z e)

w a i t (n o t F u l l) ;
b u f f e r [e n q u e u e I n d e x%S i z e] = e ;
s i g n a l (notEmpty) ;
e n q u e u e I n d e x++;

}
}

Jon A. Solworth Secure OS Design and Implementation Concurrency

Kernel as a monitor

Each method is a system call.

mon i to r k e r n e l {
i n t f o r k () ;
void e x i t () ;
i n t e x e c (name , arguments) ;
. . .

}

Jon A. Solworth Secure OS Design and Implementation Concurrency

Monitor waits

We can use many event names

Thus waking up fewer processes on average and
eliminate processes being woken and then put right back to
sleep
because the event wasn’t for that process

A variant on monitor semantics is that signal only wakes up
one process

Jon A. Solworth Secure OS Design and Implementation Concurrency

Monitor properties

Monitor is non-preemptive

(In the example, ordering of signal and increment not
material)

Many processes may be waiting to run

Monitor signals wake up all processes (test whether condition
still holds when process wakes up)

Note that wake up means “make eligible to run”. A process
can only run inside the monitor when no other process is
running.

Monitors ensure atomicity between

The later of monitor invocation and wait
and the next wait or monitor exit

Jon A. Solworth Secure OS Design and Implementation Concurrency

Preemption vs. non-preemption

Preemptive program inherently harder to write since need to
reason about underlying machine instructions (which are
atomic) and possible interleavings.

Preemptive programs need to eliminate all possible memory
interleavings

Failure to write preemptive programs properly results in
obscure bugs

Non-preemptive programs allows the programmer to directly
specify atomic unit, but

Interrupts are inherently preemptive, so monitors do not
describe this

So lets turn look at this next

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part III

Interrupts

Jon A. Solworth Secure OS Design and Implementation Concurrency

Interrupts

Interrupts can occur at any time

Could be executing inside or outside the kernel

Source could be a page fault, timer interrupt, or I/O

If no process executing in the kernel, not really a problem

If process is executing in the kernel, then there is a conflict

Jon A. Solworth Secure OS Design and Implementation Concurrency

Page fault interrupt

Page faults must by precise interrupts, meaning that the
faulting location can be repaired and the program which was
running can be resumed

the Motorola 68000 didn’t implement this properly, early
demand paging 68000 systems required two 68000s (the
second to service the page fault)

If page fault occurs in the process, go into the kernel and fix it
up and then resume process execution

if page fault occurs while executing in the kernel, its more
subtle

Jon A. Solworth Secure OS Design and Implementation Concurrency

Page fault interrupt from within the kernel

What happens if the page fault occurs from within the kernel?

It is a requirement to ensure that the code performing the
demand paging does not get paged out

Any address that can be paged out adds complexity since the
page fault means that there is an implicit conditional wait at
every point which accesses it.

Ethos avoids this complexity by not having demand paging

Opinion: demand paging, especially of kernel objects, is an
anachronism

It still has page faults, but these only occur from user space
for page allocation or to fix up page table entries.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Timer interrupts

Timer interrupts are important only from user space

They prevent a process which is doing an extensive
computation (and does not make system calls) from
monopolizing the CPU

(The kernel is coded so that it does not monopolize the CPU)

So timer interrupts, when executed in the kernel, are ignored

Just before returning from the kernel to user space, any
time-based events which are older than the current time are
processed

Jon A. Solworth Secure OS Design and Implementation Concurrency

Device interrupts

It is necessary to keep devices “moving along” so that
keyboard and mouse input are not lost and that disk and
network are kept busy.

The key is to separate the interrupt processing from changes
that the rest of the kernel can see.

Usually possible to use a queue to communicate

For example, an Ethernet input would be queued on a list of
waiting packets

Need to guard against race conditions when enqueuing and
dequeuing (e.g., memory allocation for queue elements)

Sufficient on a uniprocessor to block interrupts when doing
these operations in other than the device driver.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Device alternatives

Defer interrupts that occur w/i the kernel to end of system
call processing

Guard add synchronization on the interrupt handler and
where the rest of the code updates the same data
structure.

Fast/slow Interrupt handlers are divided into two parts, a fast
or hard component when the interrupt occurs ans a
slow or soft component where most of the
processing is deferred.

Ethos uses fast/slow Interrupts. It should be possible in Ethos to
preallocate storage so that fast interrupts do not require any
locking.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part IV

Reentrancy

Jon A. Solworth Secure OS Design and Implementation Concurrency

Re-entrancy

Definition

A procedure is reentrant if it is safe to concurrently execute it.

Note that if a procedure is re-entrant it must only call
reentrant procedures

A reentrant procedure needs to ensure atomic access to global
writable variables

It must not have any static local variables which is modifiable

It must operate only on data supplied by the parameter

Must not modify global copies of data

Jon A. Solworth Secure OS Design and Implementation Concurrency

Reentrancy and monitors

Monitors simplify reentrancy because they are non-preemptive

Monitors concurrently execute code

Monitors should be implemented with reentrancy

Must not have logical updates which spans wait

Note that since monitors are not preemptive, no
synchronization is needed to ensure atomicity

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part V

Multi-core parallelism

Jon A. Solworth Secure OS Design and Implementation Concurrency

Multicore

Multicore provides multiple processors on a chip

Problem: we have assumed only one processor in the kernel at
a time

With multicore need to ensure this property

The easiest way is with the Big Kernel Lock (BKL) which uses
a semaphore to ensure that only one processor in the kernel

We can have many processors executing in user space

Jon A. Solworth Secure OS Design and Implementation Concurrency

Big kernel lock limitations

Big kernel lock is very simple, but runs into limitations due to
Amdahl’s law

Amdahl’s law states that if f is the fraction of code which is
sequential then the maximum speedup is 1/f .

Kernels use be 10–90% of CPU cycles

Hence, traditional kernels have been designed to enable
different subsystems to be run in parallel with explicit locking.

But that adds considerable complexity.

Ethos right now uses only a single core (specified in Xen)

Easy to add a BKL

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part VI

Latches and semaphores

Jon A. Solworth Secure OS Design and Implementation Concurrency

Latches and Semaphores

Latches are simple code to note when something is in use

Use when you don’t need to worry about race conditions
(non-preemptive code)

whi le (l a t c h != 0)
w a i t (l a t c h S i g n a l) ; // i n use , wa i t t i l f r e e

l a t c h ++; // a v a i l a b l e , ge t i t

Semaphores are needed where there can be race conditions
(e.g., multicore)

Semaphores work correctly even if being executed by multiple
cores at a time

Jon A. Solworth Secure OS Design and Implementation Concurrency

Why are latches needed?

System calls are atomic

Thus when a system call waits there are two choices for work
already done:

Re-do it when the syscall wakes up
Reserve it so that other syscalls do not interfere with it
Latches are used to reserver the resource

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part VII

Memory barriers

Jon A. Solworth Secure OS Design and Implementation Concurrency

Memory Barriers

Processors uses caches to contain the contents of frequently
accessed memory addresses

Memory read requests are made first to the cache, and if not
found there, are made to memory

Memory write requests are written to the cache

Hence, memory may not contain the current value associated
with that address

On a uniprocessor system, this causes no problem as the
structure of the memory system ensures that the value read
for an address is the last value written

Jon A. Solworth Secure OS Design and Implementation Concurrency

Memory Barriers (cont’d)

On a multiprocessor, however, different processors will have
different caches

When a value can be updated by one processor and used by
another processor, there can be erroneous results

For example, with volatile memory (in the C sense)

When it is necessary to order the memory operations a barrier
is used

write memory barrier orders only the writes

full memory barrier forces all memory operations before the
barrier to complete before any after the barrier.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Architectures

Barriers are implemented by macros in C.

What the macro does, including possibly being changed into a
NO-OP, depends on the architecture

strongly ordered architectures such as the x86, require the
completion order of memory operations to be the same as the
initiation order

weakly ordered architectures does not require strong ordering

Jon A. Solworth Secure OS Design and Implementation Concurrency

Barrier use example

Consider the case of writing a message to be sent between
OSs

The writing of the message consists of two parts

writing the content of the message
writing a synchronization variable
(In Xen’s case, incrementing a counter)

it is only after the counter is incremented that the contents
will be read

must ensure that the message is written before counter is
changed

a write memory barrier is used between the two steps

note in some architectures its not necessary. Put it in anyway.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Part VIII

Summary

Jon A. Solworth Secure OS Design and Implementation Concurrency

Summary

In an OS, the kernel needs to deal with concurrency

A monitor-based solution provides simple control over
concurrency within the kernel

The monitor does not handle interrupts

Interrupts when a process is executing in user space can be
treated as system calls

Interrupts when a process is executing in kernel space perform
minimal operations at the time of the interrupt and defers
most processing when coming out of the kernel.

Jon A. Solworth Secure OS Design and Implementation Concurrency

Summary (cont’d)

Latches are used for resources which are held across waits

Or for transactions (held across syscalls)

When a syscall needs a latched object it must wait until that
object is available

When using latches, must ensure deadlock does not occur

One way is by having an ordering on process and ensuring
greatest one always completes

Need also to deal with starvation

Jon A. Solworth Secure OS Design and Implementation Concurrency

