
Secure Operating System Design and
Implementation

Coding

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

February 1, 2011

Jon A. Solworth Secure OS Design and Implementation Coding

Part I

Coding Overview

Jon A. Solworth Secure OS Design and Implementation Coding

Overview

Kernel programming environment is more primitive than
userspace

Standard C library not available in user space

Different interfaces for memory allocation and I/O, for
example

Very primitive debugging environment (register dump w/
procedure name)

Run-time errors freezes or crashes the kernel

User space is not trusted, must carefully check anything from
user space

Need to be very careful!

Jon A. Solworth Secure OS Design and Implementation Coding

Caution

You really need to think about things before you put them in
a kernel.

Of course, when you are developing ideas, you can do trial
implementations but that is not on the main copy of the code
base

For a new design, you should write (and keep up to date) a
new design document

All the parts of the OS interact, and it is necessary to think
carefully about this interaction

Jon A. Solworth Secure OS Design and Implementation Coding

This is the first OS we ever built

We’re very conservative, using the most robust construction
techniques we know

We’re coding is C, because that is a well trod path—we’ll
eventually switch to a real programming language.

Single processor design (low concurrency)

Simple OS

Performance is secondary

Jon A. Solworth Secure OS Design and Implementation Coding

Part II

The rules

Jon A. Solworth Secure OS Design and Implementation Coding

The rules

There are a large number of rules when building an OS

These rules are above the programming language

They include issues such as avoiding security holes, locking,
starvation, deadlock, storage allocation, and data structure

These rules are checked by people

Jon A. Solworth Secure OS Design and Implementation Coding

Checking information from user space

Anything from user space should be treated with suspicion

All syscall parameters need to be check to ensure they are well
formed

Also need to check they have suitable permissions

The same goes for network traffic and for the file system.

Jon A. Solworth Secure OS Design and Implementation Coding

User space copies

All pointers which are used to copy data to or from userspace must
be checked. Ensures memory is in user space and is allocated.

Copy to kernel from userspace

userspace memcpy f rom (uptr , kpt r , s)

Copy from kernel to userspace

u s e r s p a c e m e m c p y t o (uptr , kpt r , s)

where

uptr is the user space pointer,

kptr is the kernel pointer, and

s is the size in bytes

Jon A. Solworth Secure OS Design and Implementation Coding

Integer overflow/underflow

Definition

Integer overflow occurs when addition of two integers is less than
either one.

Definition

Integer underflow occurs when addition of two integers is greater
than their sum.

The problem is that integer addition is really integer addition
modulo 2s where s is the size of the variable.

Jon A. Solworth Secure OS Design and Implementation Coding

Range testing

Consider the issue of testing whether the numbers
n ∈ b . . . b + l each satisfy the condition y ≤ n ≤ z .

does this work?

i f ((b >= y) && ((b+l) <= z))
OK;

no! b + l can overflow

How about this?

i f ((b >= y) && (l <= (z−b))
OK;

Sounds like a homework problem

Jon A. Solworth Secure OS Design and Implementation Coding

Range testing

Consider the issue of testing whether the numbers
n ∈ b . . . b + l each satisfy the condition y ≤ n ≤ z .

does this work?

i f ((b >= y) && ((b+l) <= z))
OK;

no! b + l can overflow

How about this?

i f ((b >= y) && (l <= (z−b))
OK;

Sounds like a homework problem

Jon A. Solworth Secure OS Design and Implementation Coding

Range testing

Consider the issue of testing whether the numbers
n ∈ b . . . b + l each satisfy the condition y ≤ n ≤ z .

does this work?

i f ((b >= y) && ((b+l) <= z))
OK;

no! b + l can overflow

How about this?

i f ((b >= y) && (l <= (z−b))
OK;

Sounds like a homework problem

Jon A. Solworth Secure OS Design and Implementation Coding

Range testing

Consider the issue of testing whether the numbers
n ∈ b . . . b + l each satisfy the condition y ≤ n ≤ z .

does this work?

i f ((b >= y) && ((b+l) <= z))
OK;

no! b + l can overflow

How about this?

i f ((b >= y) && (l <= (z−b))
OK;

Sounds like a homework problem

Jon A. Solworth Secure OS Design and Implementation Coding

Range testing

Consider the issue of testing whether the numbers
n ∈ b . . . b + l each satisfy the condition y ≤ n ≤ z .

does this work?

i f ((b >= y) && ((b+l) <= z))
OK;

no! b + l can overflow

How about this?

i f ((b >= y) && (l <= (z−b))
OK;

Sounds like a homework problem

Jon A. Solworth Secure OS Design and Implementation Coding

Overflow

0 1 2 3 4 5 6 7

y zbb + l

l = 6

Jon A. Solworth Secure OS Design and Implementation Coding

Underflow

0 1 2 3 4 5 6 7

y z b b + l

z − b(l = 1)

Jon A. Solworth Secure OS Design and Implementation Coding

Bounded buffer example

Xen’s bounded buffer uses free-running indices in which
pointers (unsigned integers) into the buffer are always
incremented and use there full word size range.

to insert an element into the buffer it computes last + + and
then access the buffer using last modulo the buffer size

to remove an element form the buffer, it access the buffer
using first modulo the buffer size and then computes first + +

to determine the number of elements in the buffer it computer
last − first.

is this correct?

Jon A. Solworth Secure OS Design and Implementation Coding

Buffer overflow

Languages such as C/C++ do not do bounds checking, hence

char name [1 0 0] ;
f o r (i =0; i<n ; i ++)

name [i] = ‘0 ’ ;

has a buffer overflow if n > 100

there are many variants of this, such as format strings, etc.
which one needs to be careful about

also need to be aware of negative offsets (perhaps from buffer
overflow, etc.)

pointer arithmetic also has this problem

Jon A. Solworth Secure OS Design and Implementation Coding

Null pointers

De-referencing a NULL pointer causes a crash

Every procedure should check its parameters, e.g.,

ASSERT(p t r) ;

Should check other parameter conditions which must hold

Should check returns of functions called

Most procedures coded to return errors (Status), see status.h

Should check any other relationships that should hold

Jon A. Solworth Secure OS Design and Implementation Coding

The purpose of checks

The purpose of these checks is to determine when
assumptions are being violated

This either indicates a flaw in programming (the easier case)
or

A flaw in the set of assumptions being used

In any event, the high level structure of the program is broken

And it is important to know about this as soon as possible

Jon A. Solworth Secure OS Design and Implementation Coding

Error, Fault, Failure

Error the problem which results in a failure (bug)

Fault the place where the subsystem behavior deviates from
specification

Failure the place where the system deviates from specifications

Goal in debugging is to find the error

But the process begins with a failure

And then trace back to the source (typically through a binary
search)

By placing checks earlier in the code, failures occur faster, and
trace back is easier

(It is also possible in well designed and tested systems to do
fault tolerance, detecting faults early and then rolling back
state and retrying)

Jon A. Solworth Secure OS Design and Implementation Coding

Part III

Kernel Specific Issues

Jon A. Solworth Secure OS Design and Implementation Coding

Stacks

Each process has a kernel stack which is used when the
process is executing in kernel mode

Kernel stacks are small (2 pages), and hence must be careful
of stack overflow

Don’t allocate large arrays on the stack (i.e. don’t declare
large arrays in procedures)

But we can’t allocate them statically either, because we need
re-entrancy

Hence, they should be allocated per call using slob allocator

Jon A. Solworth Secure OS Design and Implementation Coding

Floating point

Ethos does not save floating point registers on entering the
kernel

Therefore, the kernel shouldn’t use floating point operations

The only place where this might be used in cryptographic
software

Jon A. Solworth Secure OS Design and Implementation Coding

Memcpy/Strcpy

strcpy assume a NULL terminated string

memcpy takes the exact size to copy

memcpy is far more heavily used in the kernel, because the
kernel needs to copy the raw bits of data created/used by
applications.

Jon A. Solworth Secure OS Design and Implementation Coding

Static variables

Consider:

i n t p (void)
{

s t a t i c char ∗name ;
// . . . change name . . .
q (name) ;

}

This is a problem with re-entrancy, when a process waits on
an event

Consider when q can wait

Then a another process calls p and updates name

Now the first processes name is updated too

Its better to just not use static local variables

Jon A. Solworth Secure OS Design and Implementation Coding

Part IV

Test suites

Jon A. Solworth Secure OS Design and Implementation Coding

Test suites

It is important to build automated test suites

because they are easy to run, you can run them often

because they describe the errors, it is easy to tell if bugs were
introduced

if you changed N lines of code, and you get an error, most
likely the error was introduced in those N lines. Better if
N = 3 then N = 1200.

Jon A. Solworth Secure OS Design and Implementation Coding

Easy test suites

The easiest was to build a test suite is to use two phases

The first phase runs each test storing the results to output
files

The second phase compares each test run against a known
good output

A very brief output if test is OK, more verbose otherwise

Very fast visual scan suffices

Avoid over automation, lets see it work

Jon A. Solworth Secure OS Design and Implementation Coding

what should be tested

Make lots of simple tests

Build up and make more complicated tests

Stress testing, throwing random stuff at the OS and see if
problems develop
(stress testing makes it more difficult to determine what is
correct output)

Jon A. Solworth Secure OS Design and Implementation Coding

Part V

Source control

Jon A. Solworth Secure OS Design and Implementation Coding

Source control

We use subversion to manage source repositories

Subversion is designed for concurrent developers

Subversion provides the following benefits:

Central place to keep latest good copy
Conflict detection and resolution
History of changes
Backup
Integration with tools

We use it for papers, proposals, etc.—not just for code

Checking into subversion directory only code that passes test
suite

Jon A. Solworth Secure OS Design and Implementation Coding

Subversion commands

Checking out or getting a copy of a repository:
svn co

svn+ssh://rites.uic.edu/home/svn/projects/ethos/ethos

Then edit your local copy

Add a new file x

svn add x

Update local copy with changes made to repository by others
svn update

Put changes back to repository (and provide a comment as to
change)
svn commit

Jon A. Solworth Secure OS Design and Implementation Coding

Layout of source files

trunk Main copy of the source base

branch A temporary copy for long term development
separate from the trunk

texnotes documents associated with the project

Jon A. Solworth Secure OS Design and Implementation Coding

Source code layout of Ethos kernel

Some directories

xen Xen interfaces

arch/x86 Architecture specific directory (there is some 64-bit
code, but that is from MiniOs)

rpc Remote procedure calls, used both in kernel and Dom0
shadow daemon

userspace process level stuff, further divided into dom0 and ethos

include include files which are

userspace both in the kernel and in userspace
ethos only used in the ethos kernel

xen include files from Xen

Jon A. Solworth Secure OS Design and Implementation Coding

Part VI

Comments

Jon A. Solworth Secure OS Design and Implementation Coding

Comments

Comments play an important part in understanding the code

Its primary purpose is to explain higher level structure

(Documents describe the highest level, this is the next level
down)

Comments should help the reader understand overall structure

Things to comment: procedures, parameters, files

Jon A. Solworth Secure OS Design and Implementation Coding

Commenting tricky code

Before commenting tricky code, the question should be asked:

Can this code be simplified?

Simpler code easier to understand, test, and integrate; less
likely to have errors

Simplification—removal of unnecessary complexity—is the
most valuable of programming tasks

Jon A. Solworth Secure OS Design and Implementation Coding

Part VII

Coding Rules

Jon A. Solworth Secure OS Design and Implementation Coding

Coding rules

A software project should look as if it was coded by a single person

A consistent style should be used throughout

Style meant to enhance reading and comprehension of code,
eliminate mistakes

Don’t need to comment what is clear from the code,
conventions

Maximize the work that the programming language is doing to
clarify, isolate, and describe

Naming, typing, partitioning into files, etc. all contribute to
this

Jon A. Solworth Secure OS Design and Implementation Coding

Types

An OS will be targeted to different architectures

Some of these will have different memory architectures,
including different sized address spaces

For example, x86 supports both 32 and 64 bit address space

Types can help bridge the gap between these systems

Enabling the OS to be split into architectural dependent code
and

architectural independent mode which uses only types to
distinguish between actions.

Jon A. Solworth Secure OS Design and Implementation Coding

Prominent “primitive” types

int 32-bit on either 32-bit or 64-bit architectures

long the word size of the architecture (32 or 64 bit)

uint32 unsigned integer of 32 bits

uint64 unsigned integer of 64 bits

int32 signed integer of 32 bits

int64 signed integer of 64 bits

vaddr t virtual address (as an unsigned integer)

msize t an unsigned integer large enough to index memory

paddr t physical address

Jon A. Solworth Secure OS Design and Implementation Coding

Naming

Names of procedures should have the file name as a prefix

Use camel case names, e.g., aDogBitMe

Procedures and variables start with lower case

Types and Constants start with upper case

Jon A. Solworth Secure OS Design and Implementation Coding

Naming

Types, even if they are the same as a primitive type, should
bit typedefed so that the type says what they are used for.
E.g., addr is an unsigned long but is used when value is an
address.

avoid unnamed constants (magic constants) in code, better to
name them and then use them

procedure names with alloc in them allocate storage, with
create allocates and initializes storage.

Enums are used in preference to const. Enums have the
advantage over const that duplicates are OK. They have the
advantage of #define that they are not macros

There should be a very good reason to code any macro in
Ethos

Jon A. Solworth Secure OS Design and Implementation Coding

Include files

Include files should center around one thing

To ensure files only loaded once per .c file, use the following
form for file xY.h

#i f n d e f X Y
#d e f i n e X Y

// c o n t e n t s h e r e

#e n d i f

Jon A. Solworth Secure OS Design and Implementation Coding

Indentation

S t a t u s
p (char ∗name , ///< name o f v a r i a b l e to be output

i n t n ///< number o f b y t e s used i n name
)

{
i n t i ;
f o r (i =0; i<n ; n++)

{
output (name [i]) ;

}
return StatusOk ;

}

Jon A. Solworth Secure OS Design and Implementation Coding

