
Secure Operating System Design and
Implementation
x86 architecture

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

April 3, 2012

Jon A. Solworth Secure OS Design and Implementation Boot

X86 architecture overview Overview

Part I

X86 architecture overview

Jon A. Solworth Secure OS Design and Implementation Boot

X86 architecture overview Overview

X86 architecture overview

The x86 architecture components that most effect OS
programming

Privileged instructions

Traps and interrupts

Time

Data layout (e.g., page tables)

Memory semantics

Virtualization

Jon A. Solworth Secure OS Design and Implementation Boot

X86 architecture overview Overview

x86 processor modes

mode characteristic
real the original 8086 instruction set with 220 mem-

ory addresses

protected the mode for the 80286, supporting 224 memory
addresses

protected for the 80386, supporting 232 memory addresses
and virtual memory

system handle system errors,
management provide power management facilities.

long AMD64 bit architecture supports 64-bit virtual
addresses and 64-bit word size.

Jon A. Solworth Secure OS Design and Implementation Boot

X86 architecture overview Overview

Registers

Control Registers: CR0, CR2, CR3 CR4, CR8 Control system
function and some system features

System-Flags Register: system status and masks

Descriptor Table Registers: used for segmentation

Task Register: task state segment

Jon A. Solworth Secure OS Design and Implementation Boot

X86 architecture overview Overview

Current Privilege Level

The Current Privilege Level (CPL) is contained in the low
order two bits of the Current Code Segment (CS).

Need to be at ring 0 to execute privileged instructions

Need to be at ring 0 to access privilege resources, such as

CR0 enables paging, caching, alignment checks and
other processor behaviors

CR2 contains the page fault linear address
CR3 points the current page table (if paging selected)
CR4 used in protected mode for PAE, Debugging

extensions,

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Part II

Memory Protection

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Memory protection overview

Processes need to be isolated from each other

The kernel must be isolated from processes

segmentation enable memory regions to be exactly specified

paging enables memory to be split up and protected in fixed
sized pages

each of paging and segmentation provides memory protection
for read, write, and execute

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

x86 memory architecture

Relevant memory architectures

32-bit protected 32-bit virtual memory and word size
32-bit PAE 36-bit physical memory, with a 32-bit virtual

memory PAE—Physical Address Extensions
x86-64 64-bit virtual memory and word size

(Also called AMD64 and Intel64)

Current Intel (non-atom) processors and AMD processors
support all these modes.

x86 architectures support older modes, including real mode,
which is the initial mode for all x86 architectures

But Xen brings up the OS into protected mode or higher.

Xen supports only 32-bit PAE or 64-bit

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

X86-64

64-bit integer registers and pointers

Doubled the number of integer registers to 16

Virtual address space is currently 248 (eventually 264)

Physical address space is currently 240 (eventually 264)

Addresses are sign extended, facilitating locating the kernel in
high memory and user programs in low memory.

Instruction pointer relative address accesses (efficient support
for Position Independent Code) in libraries.

NX (no execute bit) to prevent page from being used to
execute from.

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

X86-64 (cont’d)

Long mode can be either

long mode 64-bit address
CS.L = 1

compatibility mode 32-bit address
CS.L = 0

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Memory translation

Modern OSs use either protected mode in 32-bit

Or long mode in 64-bit (which is an extension to protected)

Every memory access is first mapped through segmentation

Segmentation adds an offset to the program generated address

Segmentation cannot be turned off, but by setting the base
address to 0 (and the limits address to the maximum memory
address), segmentation performs the identity mapping.

And then if paging is turned on, the resulting address is
mapped through the page table

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Address types

Logical Address consisting of segmentSelector : offset

Segment selector usually implicitly chosen, e.g.,

CS: (code segment) for instructions
SS: (stack segment) for stack access
DS: (data segment) for non-stack data
accesses

Linear Address (or virtual address) is

segmentBaseAddress + effectiveAddress

Physical Address is the result of page mapping the Linear Address

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Computing an effective address

Effective Address, or segment offset, is part of logical address

The effective address is what is in a C pointer

In assembly language it is computed as follows

base + scale * index + displacement
Where base is stored in a general purpose register;
scale is one of 1,2,4,8;
index is in a general purpose register;
displacement is part of the instruction

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Segmentation

In segmentation, each segment contains a base and limits

segment number is the high order bits of the logical address

segment number accesses the segment’s base and limits

the effective address is added to the base

the effective address must be less than limits

segmentation is not extensively used in modern OSs

Segmentation is effectively turned off by using a single
segment for everything

(Actually, since segments include privilege level, we need a
different segment for each ring).

64-bit disables segmentation

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Paging

x86 supports 4KByte, 2Mbyte, and 4Mbyte pages.

Ethos uses on 4KByte pages

paging must be enabled in long mode

paging is controlled through the CRs

but CRs can only be updated through Xen

Hence the primary issue is the page table formation

Xen requires that the page table in use is read-only because it
needs to ensure OSs are isolated from one another

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Protection

Virtual address tree mapping

.

. . .

the first n bits

the next n bits

Page tables are built at as a multiway tree

Each level maps n-bits of virtual address

Takes more time to do the mapping (when not in the TLB)

Enables efficient sparse use address space
Kernel mapping is shared (only root level kernel entries need to
be copied)
Userspace address can have holes in it to allow heap and stack
room to grow

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

Part III

32-bit paging

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

32-bit paging (virtual memory addresses)

31 21 11 0

page table offset 0 page table offset 1 offset

in 32-bits, using 4Kbyte pages, using 32-bit page table entries

each page can hold 1K page table entries (10 bits)

So, the page access is split into 10 + 10 + 12 bits

Two levels of page tables

Offset is 12 bits, supporting 4K pages

upper 20 bits of CR3 specify the upper 20 bits of the root of
the page table

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

Virtual address tree mapping

offset 0 offset 1 address w/i page

...

...

...

...

...

Physical Address

page frame

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

Pseudo code

typedef p t e t PageTableT [5 1 2] ;
t a b l e W a l k (pageTable , v i r t u a l A d d r e s s) {

PageTableT ∗ pt [l e v e l s +1] ;
pt [0] = pageTable ;
f o r (i =0; i< l e v e l s ; i ++)
{

// get a p p r o p r i a t e b i t s from
// the v i r t u a l a dd r e s s
o f f s e t [i] = s e l e c t (v i r t u a l A d d r e s s , i) ;
// i ndex i n t o the pt u s i n g o f f s e t , c onv e r t
// the page t a b l e e n t r y to a v i r t u a l a dd r e s s
pt [i +1] = p t e T o V i r t u a l (pt [i] [o f f s e t [i]])

}
vaddr = (char ∗) pt [l e v e l s]

+ o f f s e t (v i r t u a l A d d r e s s) ;
}

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

PD/PT

31 12 0

page frame flags

All pages are page-aligned (low order 12-bits are zero)

That allows the low order 12-bits to be used for flags

Page Directory (PD) is for the root of the page table

Page Table (PT) is for non-root of the page table

Both PD and PT are an array of entries called PDEs and
PTEs

Since both PDE and PTE have the same basic form, we’ll
often use the term PTE

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

Flags

Both PTEs and PDEs have flags

Some of these are for software use (AVL)

Some are for memory behavior, useful for device register
manipulation (PCD/PWT)

The three primary ones have to do with

Whether the page is accessible from ring 3 (U)
Whether the page is writable (R/W)
Whether the page is mapped (P)

When translating, each PDE/PTE used in the translation
must have the necessary permissions

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

32-bit Page Directory Entry (PDE) flags

11 9 8 7 6 5 4 3 2 1 0

AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/
W

P

AVL Available to software (not used by hardware)

A 1 if accessed by processor (used for LRU paging)

PCD Page-level Cache Disable 0–page table cachable;
1–page table not cachable

PWT Page level write-through
0–write back; 1–write through

U/S 1–User mode (alway accessible);
0–Supervisor mode (accessible only in kernel).
Applies to all pages reachable from the entry

R/W 0–Read only; 1–Read/Write access

P Page is present in memory

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

32-bit Page Table Entry (PTE) flags

11 9 8 7 6 5 4 3 2 1 0

AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

P

the following are applicable only on leaves of the page table
tree.

G Global page (ignored)
PAT Page attribute table (caching behavior)

D Dirty bit. Set when writing the page

other fields are the same as in the PDE

Jon A. Solworth Secure OS Design and Implementation Boot

32-bit paging

Permissions

32 bit mode is either read or read and write

execute permission is the same as read

so there is no way to turn off execute permissions and specify
read or write permissions

can specify no permissions by having P = 0

typically, kernel pages would have U = 0,R/W = 1,P = 1

typically, user space pages would have
U = 1,R/W = 1,P = 1

Jon A. Solworth Secure OS Design and Implementation Boot

PAE

Part IV

PAE

Jon A. Solworth Secure OS Design and Implementation Boot

PAE

PAE vs. non-PAE

pte t is 64-bit in PAE vs. 32-bit in non-PAE

So each page holds 1/2 then number of page table entries in
PAE as non-PAE

This results in a three level page table

Same low-order 12 bit flags in both

In addition, PAE has a No Execute (NX) as bit 63 of the PTE
specifying

Jon A. Solworth Secure OS Design and Implementation Boot

PAE

32-bit PAE (virtual memory address)

31 29 20 11 0

page
table
offset

0

page table offset 1 page table offset 2 offset

16 times the amount of physical memory (64GB max)

but 4 GB virtual, so no longer a flat memory address space

fits half the PTEs per page since PAE uses 64-bit PTEs

Three levels of page tables

Offset is 12 bits, supporting 4K pages

Jon A. Solworth Secure OS Design and Implementation Boot

PAE

32-bit PAE PDE and PTE

63 62 51 32

N
X

0 page table base address

page table base address flags

31 12 0

Same as 32-bit, but adds another 32-bits to support larger address
space and the NX (no execute) bit.

NX Bit 63, if set cannot fetch/execute instruction from this
page

32-51 another 20-bits of address (giving 52 bits of physical
address)

Jon A. Solworth Secure OS Design and Implementation Boot

AMD64 paging

Part V

AMD64 paging

Jon A. Solworth Secure OS Design and Implementation Boot

AMD64 paging

64-bit paging (virtual memory addresses)

63 48 39 30 21 12 0

Sign extension page table
offset 0

page table
offset 1

page table
offset 3

page table
offset 4

offset

Sign extension enables

kernel to be located in addresses starting with 1,
userspace addresses start with 0

Sign extension is forced, to prevent software from using the
fields to encode information–i.e., pointers must have the top
17 bits either all 0s or all 1s

Four levels of page tables

Offset is 12 bits, supporting 4K pages

Jon A. Solworth Secure OS Design and Implementation Boot

Privileged Instructions

Part VI

Privileged Instructions

Jon A. Solworth Secure OS Design and Implementation Boot

Privileged Instructions

Privileged instructions

LLDT Load Local Descriptor Table (286+)

LGDT Load Global Descriptor Table (286+)

LTR Load Task Register (286+)

LIDT Load Interrupt Descriptor Table (286+)

MOV CRn load and store control registers

LMSW Load Machine Status Word (286+)

CLTS Clear Task Switched Flag (286+).

MOV DRn load and store debug registers

INVD invalid cache (no write back)

WBINVD invalid cache (with write back)

INVLPG invalidate TLB entry

HLT halt

Jon A. Solworth Secure OS Design and Implementation Boot

Privileged Instructions

Privileged instructions

RSM return from system management mode

RDMSR read model-specific registers

WRMSR write model-specific registers

RTPMC read performance modeling counter

RDTSC read time stamp counter

RDTSCP read serialize time stamp counter

XSETBV enable one or more processor extended states

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

Part VII

X86 interrupt handling

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

X86 interrupt handling

x86 has 256 interrupts

any of these can be generated with a software interrupt
instruction (int)

interrupts 0-31 are hardware defined (and hardware generated)

interrupts 32-255 are software defined interrupts

some hardware interrupts are non-maskable (cannot ignore)

e.g., such as a power failure

maskable interrupts are deferred when IF = 0

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

x86 device interrupts

PIC: Programmable Interrupt Controller (8259A)

16 wires, one for each device which it supports

Each device maps to an interrupt number, INTR

which is sent to the CPU (x86)

use cli to set IF = 0, sti to set IF = 1

IF also affected by: interrupt/task gates, POPF, and IRET

and there is a non-maskable interrupt, from the NMI line of
the 8259A

immediately handled as interrupt 2 and must complete before
any other interrupt is handled

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

Interrupts from program being executed

Error condition in an instruction (e.g., divide by zero)

Invalid address (e.g., page fault or segmentation violation)

General Protection Fault if branched to unmapped segment

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

What has to happen on an interrupt?

Can enter a different ring (typically 0, using change code
segment (CS))

Has to save registers that would be modified before software
saves them

Has to determine whether the interrupt is allowed.

Has to ensure that interrupt handler is determined by
privileged software.

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

Interrupt Descriptor Table (IDT)

IDT contains at most 256 entries, each entry 8 bytes.

Each entry is called an interrupt/trap gate.

lidt (privileged) loads the IDTR with [startingAddress, size]

Interrupt number, n uses gate at address
IDTR.startingAddress + 8n

Each gate is as follows

32 16 14 12 7 4 0

offset (high) P DPL 0 1 1 1 T 0 0 0

}
4

Segment selector offset (low)
}

0

where P = 1 means the segment is present, DPL is descriptor
privilege level (of the invoking ring), T is 1 for trap and 0 for
interrupt

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

Interrupt (from kernel space)

Interrupts can occur within the kernel or from user space

if it occurs in kernel space, can use existing kernel space stack

hardware saves registers which would otherwise change before
software can save them

pushed on stack

EFLAGS
CS
EIP
Error Code

registers loaded
register from

ESP pushes
CS:EIP gate

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

Interrupt (from user space)

From user space its more involved

Need to store (userspace) ESP and SS
(in addition to registers saved from kernel space)

Need to set (kernel) ESP and SS

pushed on stack

SS
ESP
EFLAGS
CS
EIP
Error Code

registers loaded
registers from

SS TSS ss0
ESP TSS esp0
CS:EIP gate
EFLAGS gate, IF cleared

Jon A. Solworth Secure OS Design and Implementation Boot

X86 interrupt handling

Returning from an interrupt

uses a return from interrupt instruction rti

return uses the stack, popping off CS:EIP

where does this return to?

hardware interrupt: instruction after last completed instruction
trap: instruction after last completed instruction
fault: to the instruction causing the fault
aborts: unreliable contents

Jon A. Solworth Secure OS Design and Implementation Boot

Clocks

Part VIII

Clocks

Jon A. Solworth Secure OS Design and Implementation Boot

Clocks

Clocks

At boot time, wall clock time is read from a clock chip

After that, to updated the number of ticks is read since boot

Ticks run at processor clock rate

Tick rate slows when power management drops processor
speed

Ticks also gets messy with VMs, in which the clock is running
only during part of the time the processor is running

Finally, time keeping is not so accurate and so ntp is used to
correct time

RDTSC instruction is used to read the time stamp counter

Xen provides this information through shared info page

Jon A. Solworth Secure OS Design and Implementation Boot

Clocks

Clock characteristics

We want the clock to be

Accurate (wall time),
so that things happen at the right time
Accurate (time elapse), and
so that you can measure cost, schedule
Monotonically increasing
to make it easier to reason about programs involving time

Unfortunately, can’t have it all so

Make small changes in time smooth
Have separate clocks, one monotonic and one accurate
Use cycle counts for performance reasons

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Semantics

Part IX

Memory Semantics

Jon A. Solworth Secure OS Design and Implementation Boot

Memory Semantics

Barriers and Memory Semantics

memory semantics ensures that the value read for a memory
address A is the last value written to A.

On Uniprocessors, memory semantics holds

On Multiprocessors, because of separate caches, it does not

Thus, when using multiprocessors (such as multicore) barriers
are needed when communicating between processors

Thus, when writing a flag to multi-core shared memory saying
“Info available” an MFENCE is needed between writing (a)
the info and (b) the “info available”

Jon A. Solworth Secure OS Design and Implementation Boot

